|
|
EFFECT OF SEVERE PLASTIC DEFORMATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF BULK NANOCRYSTALLINE METALS |
NI Song1( ), LIAO Xiaozhou2, ZHU Yuntian3 |
1 State Key Lab of Powder Metallurgy, Central South University, Changsha 410083 2 School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia 3 Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27659-7919, USA |
|
Cite this article:
NI Song, LIAO Xiaozhou, ZHU Yuntian. EFFECT OF SEVERE PLASTIC DEFORMATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF BULK NANOCRYSTALLINE METALS. Acta Metall Sin, 2014, 50(2): 156-168.
|
Abstract Severe plastic deformation techniques including high-pressure torsion and equal channel angular pressing have been widely used to refine coarse-grained materials to produce nanocrystalline and ultrafine-grained materials, or manipulate the microstructure of nanocystalline materials for superior mechanical properties. This paper overviews severe plastic deformation induced structural and mechanical property evolutions on bulk nanocrystalline metals, mainly in a nanocrystalline Ni-20%Fe (mass fraction) alloy with a face-centred cubic (fcc) structure processed by high-pressure torsion to different strain values. The structural evolution and mechanical property evolution at different strain values were studied. Comprehensive characterizations on structural evolution during deformation indicate that: (1) grain growth occurred via grain rotation, and is accompanied with changes in dislocation density and twin density; (2) there is a significant grain size effect on deformation induced twinning and de-twinning. There exists an optimum grain size range for the formation of deformation twins. Outside of this grain size range the de-twinning process will dominate to annihilate existing twins; (3) different types of dislocation-twin boundary (TB) interactions occurred during deformation. Dislocation density plays an important role in dislocation-TB interactions. In a twinned grain with a low dislocation density, a dislocation may react with a TB to fully or partially penetrate the TB or to be absorbed by the TB via different dislocation reactions. In a twinned grain with a high dislocation density, dislocations tangle with each other and are pinned at the TBs, leading to the accumulation of dislocations at the TBs and raising the local strain energy. In order to release the stress concentration, stacking faults and secondary twins formed by partial dislocation emissions from the other side of the TB; (4) atom probe tomography investigation reveals that C and S atoms, which are the major impurities in the Ni-Fe alloy and segregated at grain boundaries (GBs) of the as-deposited material, migrated from disappearing GBs to the remaining GBs during high-pressure torsion. Investigation on structure-hardness relationship of the Ni-Fe alloy reveals that: strain hardening and strain softening occurred at different deformation stages. Dislocation density evolution plays a major role in the hardness evolution, while other structural evolutions, including twin density and grain size evolutions, play minor roles in the hardness evolution.
|
Received: 26 September 2013
|
|
Fund: Supported by National Natural Science Foundation of China (No.51301207) and China Postdoctoral Science Foundation (No.2013M531806) |
[1] |
Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
|
[2] |
Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
|
[3] |
Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881
|
[4] |
Valiev R Z, Alexandrov I V, Zhu Y T, Lowe T C. J Mater Res, 2002; 17: 5
|
[5] |
Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
|
[6] |
Hansen N, Huang X. Acta Mater, 1998; 46: 1827
|
[7] |
Liao X Z, Zhao Y H, Zhu Y T, Valiev R Z, Gunderov D V. J Appl Phys, 2004; 96: 636
|
[8] |
Wang K, Tao N R, Liu G, Lu J. Acta Mater, 2006; 54: 5281
|
[9] |
Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1
|
[10] |
Li Y S, Tao N R, Lu K. Acta Mater, 2008; 56: 230
|
[11] |
Mohamed F A. Acta Mater, 2003; 51: 4107
|
[12] |
Wang Y B, Liao X Z, Zhao Y H, Lavernia E J, Ringer S P, Horita Z, Langdon T G, Zhu Y T, Mater Sci Eng, 2010; A527: 4959
|
[13] |
Zhang K, Weertman J R, Eastman J A. Appl Phys Lett, 2005; 87: 061921
|
[14] |
Liao X Z, Kilmanetov A R, Valiev R Z, Gao H S, Li S D, Mukherjee A K, Bingert J F, Zhu Y T. Appl Phys Lett, 2006; 88: 021909
|
[15] |
Wang Y B, Ho J C, Liao X Z, Li H Q, Ringer S P, Zhu Y T. Appl Phys Lett, 2009; 94: 011908
|
[16] |
Li L, Ungar T, Wang Y D, Fan G J, Yang Y L, Jia N, Ren Y, Tichy G, Lendvai J, Choo H, Liaw P K. Scr Mater, 2009; 60: 317
|
[17] |
Fan G J, Fu L F, Choo H, Liaw P K, Browning N D. Acta Mater, 2006; 54: 4781
|
[18] |
Gianola D S, Petegem S V, Legros M, Brandstetter S, Swygenhoven H V, Hemker K J. Acta Mater, 2006; 54: 2253
|
[19] |
Fan G J, Wang Y D, Fu L F, Choo H, Liaw P K, Ren Y, Browning N D. Appl Phys Lett, 2006; 88: 171914
|
[20] |
Wang Y B, Ho J C, Cao Y, Liao X Z, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Zhu Y T. Appl Phys Lett, 2009; 94: 091911
|
[21] |
Li L, Ungar T, Wang Y D, Morris J R, Tichy G, Lendvai J, Yang Y L, Ren Y, Choo H, Liaw P K. Acta Mater, 2009; 57: 4988
|
[22] |
Ni S, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Scr Mater, 2010; 64: 327
|
[23] |
Ni S, Wang Y B, Liao X Z, Figueiredo R B, Li H Q, Ringer S P, Langdon T G, Zhu Y T. Phys Rev, 2012; 84B: 235401
|
[24] |
Ni S, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Mater Sci Eng, 2011; A528: 3398
|
[25] |
Ni S, Wang Y B, Liao X Z, Figueiredo R B, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Mater Sci Eng, 2011; A528: 4807
|
[26] |
Li H Q, Ebrahimi F. Mater Sci Eng, 2003; A347: 93
|
[27] |
Ni S, Sha G, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhu Y T, Langdon T G, Ringer S P. Mater Sci Eng, 2011; A528: 7500
|
[28] |
Sansoz F, Dupont V. Appl Phys Lett, 2006; 89: 111901
|
[29] |
Farkas D, Froseth A, Swygenhoven H V. Scr Mater, 2006; 55: 695
|
[30] |
Shan Z W, Stach E A, Wiezorek J M K, Knap J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
|
[31] |
Wang Y B, Li B Q, Sui M L, Mao S X. Appl Phys Lett, 2008; 92: 011903
|
[32] |
Legros M, Gianola D S, Hemker K J. Acta Mater, 2008; 56: 3380
|
[33] |
Shan Z W, Mishra R K, Asif S A S, Warren O L, Minor A M. Nat Mater, 2008; 7: 115
|
[34] |
Rodney D, Phillips R. Phys Rev Lett, 1999; 82: 1704
|
[35] |
Wu X L, Zhu Y T. Phys Rev Lett, 2008; 101: 025503
|
[36] |
Chen M W, Ma E, Hemker K J, Sheng H W, Wang Y M, Cheng X M. Science, 2003; 300: 1275
|
[37] |
Liao X Z, Zhou F, Lavernia E J, Srinivasan S G, Baskes M I, He D W, Zhu Y T. Appl Phys Lett, 2003; 83: 632
|
[38] |
Yamakov V, Wolf D, Phillpot S R, Gleiter H. Acta Mater, 2002; 50: 5005
|
[39] |
Li N, Wang J, Huang J Y, Misra A, Zhang X. Scr Mater, 2011; 64: 149
|
[40] |
Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang J Y, Hirth J P. Acta Mater, 2010; 58: 2262
|
[41] |
Zhang J Y, Liu G, Wang R H, Li J, Sun J, Ma E. Phys Rev, 2010; 81B: 172104
|
[42] |
Zhu Y T, Liao X Z, Srinivasan S G, Lavernia E J. J Appl Phys, 2005; 98: 034319
|
[43] |
Wen H M, Zhao Y H, Li Y, Ertorer O, Nesterov K M, Islamgaliev R K, Valiev R Z, Lavernia E J. Philos Mag, 2010; 90: 4541
|
[44] |
Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
|
[45] |
Lu K, Lu L, Suresh S. Science, 2009; 324: 349
|
[46] |
Shen Y F, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005; 52: 989
|
[47] |
Zhao Y H, Zhu Y T, Liao X Z, Horita Z, Langdon T G. Appl Phys Lett, 2006; 89: 121906
|
[48] |
Wang Y B, Wu B, Sui M L. Appl Phys Lett, 2008; 93: 041906
|
[49] |
Zhao Y H, Bingert J F, Liao X Z, Cui B Z, Han K, Sergueeva A V, Mukherjee A K, Valiev R Z, Langdon T G, Zhu Y T. Adv Mater, 2006; 18: 2949
|
[50] |
Yamakov V, Wolf D, Phillpot S R, Gleiter H. Acta Mater, 2003; 51: 4135
|
[51] |
Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126
|
[52] |
Jin Z H, Gumbsch P, Ma E, Albe K, Lu K, Hahn H.Scr Mater, 2006; 54: 1163
|
[53] |
Zhu Y T, Liao X Z, Wu X L. Prog Mater Sci, 2012; 57: 1
|
[54] |
Rice J R. J Mech Phys Solid, 1992; 40: 239
|
[55] |
Shabib I, Miller R E. Modell Simul Mater Sci Eng, 2009; 17: 055009
|
[56] |
Ni S, Wang Y B, Liao X Z, Figueiredo R B, Li H Q, Ringer S P, Langdon T G, Zhu Y T. Acta Mater, 2012; 60: 3181
|
[57] |
Huang J Y, Zhu Y T, Liao X Z, Valiev R Z. Philos Mag Lett, 2004; 84: 183
|
[58] |
Zhang L C, Calin M, Paturaud F, Mickel C, Eckert J. Appl Phys Lett, 2007; 90: 201908
|
[59] |
Ivanisenko Y, Maclaren I, Sauvage X, Valiev R Z, Fecht H J. Acta Mater, 2006; 54: 1659
|
[60] |
Mazilkin A A, Straumal B B, Rabkin E, Baretzky B, Enders S, Protasova S G, Kogtenkova O A, Valiev R Z. Acta Mater, 2006; 54: 3933
|
[61] |
Straumal B B, Baretzky B, Mazilkin A A, Phillipp F, Kogtenkova O A, Volkov M N, Valiev R Z. Acta Mater, 2004; 52: 4469
|
[62] |
Ivanisenko Yu V, Korznikov A V, Safarov I M, Valiev R Z. Nanostruct Mater, 1995; 6: 433
|
[63] |
Shen H, Li Z, Günther B, Korznikov A V, Safarov I M, Valiev R Z. Nanostruct Mater, 1995; 6: 385
|
[64] |
Wang Y B, Liao X Z, Zhao Y H, Cooley J C, Horita Z, Zhu Y T. Appl Phys Lett, 2013; 102: 231912
|
[65] |
Zhang L C, Calin M, Paturaud F, Mickel C, Eckert J. Appl Phys Lett, 2007; 90: 201908
|
[66] |
Okamoto H. Phase Diagram for Binary Alloy. OH, USA: ASM International, 2000: 1
|
[67] |
Gall R L, Liao G, Saindrenan G. Scr Mater, 1999; 41: 427
|
[68] |
Gall R L, Quérard E, Saindrenan G, Mourton H, Roptin D. Scr Mater, 1996; 35: 1175
|
[69] |
Parthasarathy T A, Shewmon P G. Scr Metall, 1983; 17: 943
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|