|
|
INVESTIGATION OF ATOMISTIC DEFORMATION MECHANISM OF GRADIENT NANOTWINNED COPPER USING MOLECULAR DYNAMICS SIMULATION METHOD |
ZHOU Haofei, QU Shaoxing( ) |
Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027 |
|
Cite this article:
ZHOU Haofei, QU Shaoxing. INVESTIGATION OF ATOMISTIC DEFORMATION MECHANISM OF GRADIENT NANOTWINNED COPPER USING MOLECULAR DYNAMICS SIMULATION METHOD. Acta Metall Sin, 2014, 50(2): 226-230.
|
Abstract Strengthening by twin boundaries at nanoscale and gradient surface nanocrystallization are two important strengthening approaches recently drawing considerable attention in the field of metallic material research. In the present work, a novel nanostructure, i.e., gradient nanoscale twin boundaries, is proposed. To reveal their unique deformation mechanism, uniaxial tension simulations of gradient nanotwinned copper are investigated by molecular dynamics simulations. The results show that partial dislocations govern the deformation of relatively thicker twins while full dislocations control the deformation of relatively thinner twin layers. Nanoindentation processes of gradient nanotwinned copper are also performed, providing insights on the strengthening and hardening effects of nanoscale twin boundaries.
|
Received: 09 September 2013
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.11172264 and 11222218) and Science and Technology Innovative Research Team of Zhejiang Province (No.2009R50010) |
[1] |
Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
|
[2] |
Lu K, Lu L, Suresh S. Science, 2009; 324: 349
|
[3] |
Wang Y B, Sui M L. Appl Phys Lett, 2009; 94: 021909
|
[4] |
Qin E W, Lu L, Tao N R, Lu K. Scr Mater, 2009; 60: 539
|
[5] |
Shan Z W, Lu L, Minor A M, Stach E A, Mao S W.JOM, 2008; 60: 71
|
[6] |
Cao A J, Wei Y G. J Appl Phys, 2007; 102: 083511
|
[7] |
Dao M, Lu L, Shen Y F, Suresh S. Acta Mater, 2006; 54: 5421
|
[8] |
Zhu T, Li J, Samanta A, Kim H G, Suresh S. PNAS, 2007; 104: 3031
|
[9] |
Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126
|
[10] |
Li X Y, Wei Y J, Lu L, Lu K, Gao H J. Nature, 2010; 464: 877
|
[11] |
Zhou H F, Qu S X, Yang W. Modell Simul Mater Sci Eng, 2010; 18: 065002
|
[12] |
Qu S X, Zhou H F. Scr Mater, 2011; 65: 265
|
[13] |
Qu S X, Zhou H F, Huang Z L. Scr Mater, 2011; 65: 715
|
[14] |
Gleiter H. Acta Mater, 2000; 48: 1
|
[15] |
Kumar K S, Swygenhoven H V, Suresh S. Acta Mater, 2003; 51: 5743
|
[16] |
Chen J, Lu L, Lu K. Scr Mater, 2006; 54: 1913
|
[17] |
Knapp J A, Follstaedt D M. J Mater Res, 2004; 19: 218
|
[18] |
Schuh C A, Nieh T G, Iwasaki H. Acta Mater, 2003; 51: 431
|
[19] |
Li H Q, Ebrihimi F. Acta Mater, 2006; 54: 2877
|
[20] |
Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S. Acta Mater, 2003; 51: 5159
|
[21] |
Hanlon T, Kwon Y N, Suresh S. Scr Mater, 2003; 49: 675
|
[22] |
Witney A B, Sanders P G, Weertman J R. Scr Mater, 1995; 33: 2025
|
[23] |
Bellemare S C, Dao M, Suresh S. Mech Mater, 2008; 40: 206
|
[24] |
Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
|
[25] |
Honeycutt J D, Andersen H C. J Phys Chem, 1987; 91: 4950
|
[26] |
Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D. Phys Rev, 2001; 63B: 224106
|
[27] |
Qu S X, Wang G M, Zhou H F, Huang Z L. Comput Mater Sci, 2011; 50: 1567
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|