Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (12): 1472-1480    DOI: 10.11900/0412.1961.2015.00158
Current Issue | Archive | Adv Search |
DEFORMATION MECHANISMS OF Ni-BASED SINGLE CRYSTAL SUPERALLOYS DURING STEADY-STATE CREEP AT INTERMEDIATE TEMPERATURES
Yong SU1,2,Sugui TIAN1(),Huichen YU3,Lili YU1
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2 School of Energy and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142
3 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, AVIC Beijing Institute of Aeronautical Materials, Beijing 100095
Cite this article: 

Yong SU,Sugui TIAN,Huichen YU,Lili YU. DEFORMATION MECHANISMS OF Ni-BASED SINGLE CRYSTAL SUPERALLOYS DURING STEADY-STATE CREEP AT INTERMEDIATE TEMPERATURES. Acta Metall Sin, 2015, 51(12): 1472-1480.

Download:  HTML  PDF(4344KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based single crystal (SC) superalloys have been widely used to produce turbine blades of aeroengines, but under the action of centrifugal force, creep damage is still the main failure mode. In service, the blades experience multiple cycles of various conditions of high temperatures, low stresses and intermediate temperatures, high stresses, and due to effective and efficient means of cooling and insulating the blades during operation, the actual temperature the blades bear can be smaller than the working temperature at the hot ends of aeroengines, so the systematical study on the creep behavior of SC superalloys at intermediate temperatures, high stresses is significant. It is generally considered that dislocations cutting γ′ phase is the main deformation mechanism of SC alloys at intermediate temperatures, high stresses, and dislocations cutting into γ′ phase can be decomposed into different configurations for different alloy systems, even under similar conditions. Moreover, large amount of dislocations cutting into γ′ phase means the degradation of creep performance of the alloys, so it is significant to study the cutting modes of dislocations. In this work, by means of creep tests, TEM observations and diffraction contrast analysis of dislocations, the deformation mechanisms of a Ni-based SC superalloy during steady-state creep at intermediate temperatures, high stresses are studied. Results show that, under the conditions of 760 ℃, 760 MPa and 800 ℃, 650 MPa, dislocations cutting into γ′ phase are decomposed to form partial dislocations plus superlattice intrinsic stacking faults (SISF). Thereinto, the leading α/3<112> super Shockley partial dislocations cut into γ′ precipitates, while the dragging α/6<112> Shockley partial dislocations remain at γ′/γ interfaces, and between them there exists SISF. Additionally, super dislocations shearing into γ′ phase can cross slip from {111} to {100} crystal planes to form Kear-Wilsdorf (K-W) locks with non-plane dislocation core structure, which can inhibit the slip and cross slip of dislocations to enhance the creep strength of the alloy. At 850 ℃, 500 MPa, stacking faults disappear in the alloy, and some a<110> super dislocations cutting into γ′ rafts can be decomposed to form the configuration of two partial dislocations with Burgers vector of α/2<110> plus antiphase boundary (APB), and K-W locks are released for high-temperature thermal activation results in the cross slip of dislocations from cubic slip systems to octahedral ones.

Key words:  Ni-based single crystal superalloy      creep      dislocation      stacking fault      deformation mechanism     
Fund: Supported by National Natural Science Foundation of China (No.51271125) and Liaoning Educational Committee (No.L2015426)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00158     OR     https://www.ams.org.cn/EN/Y2015/V51/I12/1472

Fig.1  SEM image on (100) plane of the alloy after heat treatment
Fig.2  Creep curves of the alloy under different conditions
Fig.3  TEM image of the alloy after being crept for 40 h to steady-state stage at 760 ℃, 760 MPa (s—stress, region I shows the connection of γ' precipitates, regions Ⅱ and ⅡI show large amount of matrix dislocations, arrow 1 in the inset shows dislocation cross slip in γ matrix, arrows 2 and 3 show superlattice intrinsic stacking faults in γ' phase, and arrow 4 shows super dislocations cutting into γ' phase)
Fig.4  TEM images of the alloy after being crept for 40 h to steady-state stage at 800 ℃, 650 MPa (a) and 850 ℃, 500 MPa (b) (Region IV shows the connection of some γ' precipitates along stress axis, region V shows high-density interfacial dislocations, arrows 5 and 6 show dislocation bowing out, arrows 7 and 9 show super dislocations cutting into γ' phase, arrows 8 and 10 respectively show stacking faults and dislocation pairs in γ' phase)
Fig.5  Diffraction contrast images of the alloy after being crept for 40 h at 760 ℃, 760 MPa with diffraction vectors of g=[002] (a), g=[113-] (b), g=[020] (c) and g=[13-3] (d)
Fig.6  Diffraction contrast images of the alloy after being crept for 40 h at 800 ℃, 650 MPa with diffraction vectors of g=[020] (a), g=[113-] (b), g=[131-] (c) and g=[13-1] (d)
Fig.7  Diffraction contrast images of the alloy after being crept for 40 h at 850 ℃, 500 MPa with diffraction vectors of g=[133-] (a), g=[020] (b), g=[113] (c) and g=[022] (d)
Fig.8  Schematics of dislocations shearing into γ' phase to form superlattice intrinsic stacking faults (SISFs) (a)[22] and antiphase boundary (APB) (b) (d—expanding distance of SISF)
Fig.9  Schematics of the formation and release of Kear-Wilsdorf locks (Arrows 1 and 3 represent dislocation slip on {111} plane, and arrow 2 represents dislocation slip on {100} plane)
[1] Tian S G, Zhang S, Liang F S, Li A N, Li J J. Mater Sci Eng, 2011; A528: 4988?
[2] Xia Y F, Jin Y L. J?Northeast?Univ (Nat Sci), 2008; 29: 1053
[2] (夏永发, 金玉龙. 东北大学学报(自然科学版), 2008; 29: 1053)
[3] Liu L, Huang T W, Zhang J, Fu H Z. Mater Lett, 2007; 61: 227
[4] Reed R C, Tao T, Warnken N. Acta Mater, 2009; 57: 5898
[5] Ma W Y, Li S S, Qiao M, Gong S K, Zheng Y R, Han Y F. Chin J Nonferrous Met, 2006; 16: 937
[5] (马文有, 李树索, 乔 敏, 宫声凯, 郑运荣, 韩雅芳. 中国有色金属学报, 2006; 16: 937)
?Zhang J, Li J G, Jin T, Sun X F, Hu Z Q. Mater Sci Eng, 2010; A527: 3051?
[7] Zhang J X, Murakumo T, Koizumi Y, Kobayashi T, Harada H. Acta Mater, 2003; 51: 5073
[8] Rae C M F, Matan N, Reed R C. Mater Sci Eng, 2001; A300: 125
[9] Kear B K, Leverant G R, Oblak J M. Trans ASM,1969; 62: 639
[10] Leverant G R, Kear B H. Metall Trans, 1970; 1: 491
[11] Kear B H, Oblak J M, Giamei A F. Metall Trans, 1970; 1: 2477
[12] Link T, Feller-Kniepmeier M. Metall Trans, 1992; 23A: 99
[13] Yu X F, Tian S G, Du H Q, Wang M G, Meng F L. Rare Met Mater Eng, 2007; 36: 2148
[13] (于兴福, 田素贵, 杜洪强, 王明罡, 孟凡来. 稀有金属材料与工程, 2007; 36: 2148)
[14] Sass V, Glatzel U, Feller-Kniepmeier M. In: Kissinger R D, Deye D J, Anton D L,Cetel A D, Natal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale, PA: TMS, 1996: 283
[15] Sass V, Glatzel U, Feller-Kniepmeier M. Acta Metall Mater, 1996; 44: 1967
[16] Matan N, Cox D C, Carter P, Rist M A, Rae C M F, Reed R C. Acta Mater, 1999; 47: 1549
[17] Caron P, Khan T. Mater Sci Eng, 1983; 61: 173
[18] Lin D L, Lin T L, Wen M. Mater Sci Eng, 1989; A113: 207
[19] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Acta Metall Sin, 2005; 41: 1215
[19] (刘丽荣, 金 涛, 赵乃仁, 王志辉, 孙晓峰, 管恒荣, 胡壮麒. 金属学报, 2005; 41: 1215)
[20] Tian S G, Ding X, Guo Z G, Xie J, Xue Y C, Shu D L. Mater Sci Eng, 2014; A594: 7
[21] Yang H, Li Z H, Huang M S. Comput Mater Sci, 2013; 75: 52
[22] Peng Z F, Ren Y Y, Fan B Z,Yan P, Zhao J C,Wang Y Q, Sun J H. Acta Metall Sin, 1999; 35: 9
[22] (彭志方, 任遥遥, 樊宝珍, 燕 平, 赵京晨, 王延庆, 孙家华. 金属学报, 1999; 35: 9)
[23] Tian S G, Wu J, Shu D L, Su Y, Yu H C, Qian B J. Mater Sci Eng, 2014; A616: 260
[24] Milligan W W, Antolovich S D. Metall Trans, 1991; 22A: 2309
[25] Gabb T P, Draper S L, Hull D R, Mackay R A, Nathal M V. Mater Sci Eng, 1989; A118: 59
[26] Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B, Hu Z Q. Mater Sci Eng, 2000; A279: 160
[27] Gabrisch H, Mukherji D. Acta Mater, 2000; 48: 3157
[28] Zhang J X, Murakumo T, Koizumi Y, Kobayashi T, Harada H, Masaki Jr S. Metall Mater Trans, 2003; 33A: 3741
[29] Doun J, Veyssiere P, Beachamp P. Philos Mag, 1986; 54A: 375
[30] Veyssiere P, Doun J, Beachamp P. Philos Mag, 1985; 51A: 469
[31] Foiles S M, Daw M S. J Mater Res, 1987; 2: 5
[32] Chen S P, Voter A F, Srolovitz D J. Scr Metall, 1986; 20: 1389
[33] Kear B H, Wilsdorf H G F. Trans Met Soc, 1962; 224: 382
[34] Liu J L, Jin T, Zhang J H, Hu Z Q. Acta Metall Sin, 2001; 37: 1233
[34] (刘金来, 金 涛, 张静华, 胡壮麒. 金属学报, 2001; 37: 1233)
[35] Vitek V. Prog Mater Sci, 1992; 36(1): 1
[36] Yamaguchi M, Umakoshi Y. Prog Mater Sci, 1992; 34(1): 1
[37] Vitek V. Intermetallics, 1998; 6: 579
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[6] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[10] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[11] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[12] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[13] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[14] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[15] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
No Suggested Reading articles found!