|
|
DEFORMATION MECHANISMS OF Ni-BASED SINGLE CRYSTAL SUPERALLOYS DURING STEADY-STATE CREEP AT INTERMEDIATE TEMPERATURES |
Yong SU1,2,Sugui TIAN1( ),Huichen YU3,Lili YU1 |
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 2 School of Energy and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142 3 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, AVIC Beijing Institute of Aeronautical Materials, Beijing 100095 |
|
Cite this article:
Yong SU,Sugui TIAN,Huichen YU,Lili YU. DEFORMATION MECHANISMS OF Ni-BASED SINGLE CRYSTAL SUPERALLOYS DURING STEADY-STATE CREEP AT INTERMEDIATE TEMPERATURES. Acta Metall Sin, 2015, 51(12): 1472-1480.
|
Abstract Ni-based single crystal (SC) superalloys have been widely used to produce turbine blades of aeroengines, but under the action of centrifugal force, creep damage is still the main failure mode. In service, the blades experience multiple cycles of various conditions of high temperatures, low stresses and intermediate temperatures, high stresses, and due to effective and efficient means of cooling and insulating the blades during operation, the actual temperature the blades bear can be smaller than the working temperature at the hot ends of aeroengines, so the systematical study on the creep behavior of SC superalloys at intermediate temperatures, high stresses is significant. It is generally considered that dislocations cutting γ′ phase is the main deformation mechanism of SC alloys at intermediate temperatures, high stresses, and dislocations cutting into γ′ phase can be decomposed into different configurations for different alloy systems, even under similar conditions. Moreover, large amount of dislocations cutting into γ′ phase means the degradation of creep performance of the alloys, so it is significant to study the cutting modes of dislocations. In this work, by means of creep tests, TEM observations and diffraction contrast analysis of dislocations, the deformation mechanisms of a Ni-based SC superalloy during steady-state creep at intermediate temperatures, high stresses are studied. Results show that, under the conditions of 760 ℃, 760 MPa and 800 ℃, 650 MPa, dislocations cutting into γ′ phase are decomposed to form partial dislocations plus superlattice intrinsic stacking faults (SISF). Thereinto, the leading α/3<112> super Shockley partial dislocations cut into γ′ precipitates, while the dragging α/6<112> Shockley partial dislocations remain at γ′/γ interfaces, and between them there exists SISF. Additionally, super dislocations shearing into γ′ phase can cross slip from {111} to {100} crystal planes to form Kear-Wilsdorf (K-W) locks with non-plane dislocation core structure, which can inhibit the slip and cross slip of dislocations to enhance the creep strength of the alloy. At 850 ℃, 500 MPa, stacking faults disappear in the alloy, and some a<110> super dislocations cutting into γ′ rafts can be decomposed to form the configuration of two partial dislocations with Burgers vector of α/2<110> plus antiphase boundary (APB), and K-W locks are released for high-temperature thermal activation results in the cross slip of dislocations from cubic slip systems to octahedral ones.
|
|
Fund: Supported by National Natural Science Foundation of China (No.51271125) and Liaoning Educational Committee (No.L2015426) |
[1] | Tian S G, Zhang S, Liang F S, Li A N, Li J J. Mater Sci Eng, 2011; A528: 4988? | [2] | Xia Y F, Jin Y L. J?Northeast?Univ (Nat Sci), 2008; 29: 1053 | [2] | (夏永发, 金玉龙. 东北大学学报(自然科学版), 2008; 29: 1053) | [3] | Liu L, Huang T W, Zhang J, Fu H Z. Mater Lett, 2007; 61: 227 | [4] | Reed R C, Tao T, Warnken N. Acta Mater, 2009; 57: 5898 | [5] | Ma W Y, Li S S, Qiao M, Gong S K, Zheng Y R, Han Y F. Chin J Nonferrous Met, 2006; 16: 937 | [5] | (马文有, 李树索, 乔 敏, 宫声凯, 郑运荣, 韩雅芳. 中国有色金属学报, 2006; 16: 937) | | ?Zhang J, Li J G, Jin T, Sun X F, Hu Z Q. Mater Sci Eng, 2010; A527: 3051? | [7] | Zhang J X, Murakumo T, Koizumi Y, Kobayashi T, Harada H. Acta Mater, 2003; 51: 5073 | [8] | Rae C M F, Matan N, Reed R C. Mater Sci Eng, 2001; A300: 125 | [9] | Kear B K, Leverant G R, Oblak J M. Trans ASM,1969; 62: 639 | [10] | Leverant G R, Kear B H. Metall Trans, 1970; 1: 491 | [11] | Kear B H, Oblak J M, Giamei A F. Metall Trans, 1970; 1: 2477 | [12] | Link T, Feller-Kniepmeier M. Metall Trans, 1992; 23A: 99 | [13] | Yu X F, Tian S G, Du H Q, Wang M G, Meng F L. Rare Met Mater Eng, 2007; 36: 2148 | [13] | (于兴福, 田素贵, 杜洪强, 王明罡, 孟凡来. 稀有金属材料与工程, 2007; 36: 2148) | [14] | Sass V, Glatzel U, Feller-Kniepmeier M. In: Kissinger R D, Deye D J, Anton D L,Cetel A D, Natal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale, PA: TMS, 1996: 283 | [15] | Sass V, Glatzel U, Feller-Kniepmeier M. Acta Metall Mater, 1996; 44: 1967 | [16] | Matan N, Cox D C, Carter P, Rist M A, Rae C M F, Reed R C. Acta Mater, 1999; 47: 1549 | [17] | Caron P, Khan T. Mater Sci Eng, 1983; 61: 173 | [18] | Lin D L, Lin T L, Wen M. Mater Sci Eng, 1989; A113: 207 | [19] | Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Acta Metall Sin, 2005; 41: 1215 | [19] | (刘丽荣, 金 涛, 赵乃仁, 王志辉, 孙晓峰, 管恒荣, 胡壮麒. 金属学报, 2005; 41: 1215) | [20] | Tian S G, Ding X, Guo Z G, Xie J, Xue Y C, Shu D L. Mater Sci Eng, 2014; A594: 7 | [21] | Yang H, Li Z H, Huang M S. Comput Mater Sci, 2013; 75: 52 | [22] | Peng Z F, Ren Y Y, Fan B Z,Yan P, Zhao J C,Wang Y Q, Sun J H. Acta Metall Sin, 1999; 35: 9 | [22] | (彭志方, 任遥遥, 樊宝珍, 燕 平, 赵京晨, 王延庆, 孙家华. 金属学报, 1999; 35: 9) | [23] | Tian S G, Wu J, Shu D L, Su Y, Yu H C, Qian B J. Mater Sci Eng, 2014; A616: 260 | [24] | Milligan W W, Antolovich S D. Metall Trans, 1991; 22A: 2309 | [25] | Gabb T P, Draper S L, Hull D R, Mackay R A, Nathal M V. Mater Sci Eng, 1989; A118: 59 | [26] | Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B, Hu Z Q. Mater Sci Eng, 2000; A279: 160 | [27] | Gabrisch H, Mukherji D. Acta Mater, 2000; 48: 3157 | [28] | Zhang J X, Murakumo T, Koizumi Y, Kobayashi T, Harada H, Masaki Jr S. Metall Mater Trans, 2003; 33A: 3741 | [29] | Doun J, Veyssiere P, Beachamp P. Philos Mag, 1986; 54A: 375 | [30] | Veyssiere P, Doun J, Beachamp P. Philos Mag, 1985; 51A: 469 | [31] | Foiles S M, Daw M S. J Mater Res, 1987; 2: 5 | [32] | Chen S P, Voter A F, Srolovitz D J. Scr Metall, 1986; 20: 1389 | [33] | Kear B H, Wilsdorf H G F. Trans Met Soc, 1962; 224: 382 | [34] | Liu J L, Jin T, Zhang J H, Hu Z Q. Acta Metall Sin, 2001; 37: 1233 | [34] | (刘金来, 金 涛, 张静华, 胡壮麒. 金属学报, 2001; 37: 1233) | [35] | Vitek V. Prog Mater Sci, 1992; 36(1): 1 | [36] | Yamaguchi M, Umakoshi Y. Prog Mater Sci, 1992; 34(1): 1 | [37] | Vitek V. Intermetallics, 1998; 6: 579 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|