Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (4): 479-488    DOI: 10.3724/SP.J.1037.2013.00580
Current Issue | Archive | Adv Search |
INFLUENCE OF INDUCTION HEATING CONTINUOUS ANNEALING ON RECRYSTALLIZATION AND INTER- FACIAL INTERMETALLIC COMPOUND OF COPPER-CLAD ALUMINUM WIRE
JIANG Yanbin1,2, LIU Xinhua1,2, WANG Chunyang1, MO Yongda1, XIE Jianxin1,2
1 Key Laboratory for Advanced Materials Processing of Ministry of Education, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083
2 Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

JIANG Yanbin, LIU Xinhua, WANG Chunyang, MO Yongda, XIE Jianxin. INFLUENCE OF INDUCTION HEATING CONTINUOUS ANNEALING ON RECRYSTALLIZATION AND INTER- FACIAL INTERMETALLIC COMPOUND OF COPPER-CLAD ALUMINUM WIRE. Acta Metall Sin, 2014, 50(4): 479-488.

Download:  HTML  PDF(10913KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Influences of induction heating continuous annealing (IHCA) on the microstructure of both copper sheath and aluminum core, and intermetallic compound at the Cu/Al interface of cold-drawn copper-clad aluminum wire were investigated, compared with the traditional isothermal annealing in furnace (TIA). The results showed that recovery of both the copper sheath and aluminum core happened when the temperature of IHCA was 250 ℃. Recrystallization began to occur in the copper sheath at 300 ℃ and in the aluminum core at 330 ℃, respectively. Complete recrystallization of both the copper sheath and aluminum core took place at 430 ℃, whose average grain size were 6.0 and 7.3 μm, respectively. An intermetallic compound CuAl2 discontinuously formed at the interface at 360 ℃, and continuous CuAl2 layer formed at 390 ℃. Both CuAl2 layer and Cu9Al4 layer formed at the interface at 430 ℃, with average thickness of 0.52 and 0.48 μm, respectively. With further raising the temperature, the grains of both copper sheath and aluminum core grew, and the thickness of the intermetallic compound layer increased slightly. The appropriate IHCA temperature of the cold-drawn copper-clad aluminum wire was 430 ℃. Compared with TIA, IHCA was able to not only refine recrystallized grain of both copper sheath and aluminum core remarkably, but also reduce the thickness of the interfacial intermetallic compound layer in the copper-clad aluminum wire.

Key words:  copper-clad aluminum wire      induction heating annealing      recrystallization      intermetallic compound     
Received:  13 September 2013     
ZTFLH:  TG146.4  
Fund: Supported by National Natural Science Foundation of China (No.51104016), National High Technology Research and Development Program of China (No.2013AA030706) and Fundamental Research Funds for the Central Universities of China (Nos.FRF-TP-12-147A, FRF-MP-10-004B and FRF-TP-12-146A)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00580     OR     https://www.ams.org.cn/EN/Y2014/V50/I4/479

Fig.1  

感应加热连续退火实验装置示意图

Fig.2  

线材上某测温点在感应加热连续退火过程中的温度变化曲线

Fig.3  

感应加热退火前后铜包铝复合线材包覆Cu层的EBSD取向成像图

Fig.4  

感应加热退火前后铜包铝复合线材Al芯的EBSD取向成像图

Fig.5  

感应加热退火前后铜包铝复合线材Cu/Al界面形貌及相组成

Temperature / ℃ Intermetallic compound Atomic fraction
of Cu / %
Atomic fraction of Al / % Thickness / μm
360 CuAl2 32.6 67.4 0.20
390
CuAl2 32.2 67.8 0.40
430 CuAl2 34.8 65.2 0.52
Cu9Al4 69.7 30.3 0.48
470 CuAl2 29.3 70.7 0.64
Cu9Al4 63.1 36.9 0.58
表1  感应加热退火后铜包铝复合线材界面金属间化合物成分和平均厚度
Process condition Grain size / μm Thickness of intermetallic compound / μm
Copper Aluminum CuAl2 Cu9Al4 CuAl Total thickness
IHCA 430 ℃ 6.0 7.3 0.52 0.48 - 1.00
470 ℃ 7.2 12.0 0.64 0.58 - 1.22
TIA 350 ℃, 60 min 8.0 12.7 2.20 1.00 0.60 3.80
400 ℃, 60 min 10.0 17.0 2.50 1.40 1.10 5.00
450 ℃, 60 min - - 6.40 4.10 2.90 13.40
表2  感应加热连续退火和炉式等温退火复合线材Cu层和Al芯完全再结晶晶粒平均尺寸和界面金属间化合物厚度
Fig.6  

350 ℃, 60 min炉式等温退火后铜包铝复合线材包覆Cu层、Al芯的EBSD取向成像图和界面组织的SEM像

[1] Sasaki T T, Morris R A, Thompson G B, Syarif Y, Fox D. Scr Mater, 2010; 63: 488
[2] Kang C G, Jung Y J, Kwon H C. J Mater Process Technol, 2002; 124: 49
[3] Xu R C, Tang D, Ren X P, Wang X H, Wen Y H. Rare Met, 2007; 26: 230
[4] Wang Q N, Liu X H, Liu X F, Xie J X. Acta Metall Sin, 2008; 44: 675
(王秋娜, 刘新华, 刘雪峰, 谢建新. 金属学报, 2008; 44: 675)
[5] Wang Q N, Liu X H, Liu X F, Xie J X. J Mater Eng, 2008; (7): 30
(王秋娜, 刘新华, 刘雪峰, 谢建新. 材料工程, 2008; (7): 30)
[6] Lee W B, Bang K S, Jung S B. J Alloys Compd, 2005; 390: 212
[7] Hug E, Bellido N. Mater Sci Eng, 2011; A528: 7103
[8] Ying D Y, Zhang D L. J Alloys Compd, 2000; 311: 275
[9] Ouyang J, Yarrapareddy E, Kovacevic R. J Mater Process Technol, 2006; 172: 110
[10] Peng X K, Wuhrer R, Heness G, Yeung W Y. J Mater Sci, 1999; 34: 2029
[11] Chen C Y, Chen H L, Hwang W S. Mater Trans, 2006; 47: 1232
[12] Chen C Y, Hwang W S. Mater Trans, 2007; 48: 1938
[13] Markovsky P E, Semiatin S L. J Mater Process Technol, 2010; 210: 518
[14] Markovsky P E, Semiatin S L. Mater Sci Eng, 2011; A528: 3079
[15] Shang F N, Sekiya E, Nakayama Y. Mater Trans, 2011; 52: 2052
[16] Zhu X, Zhang T, Marchant D, Morris V. Mater Sci Eng, 2011; A528: 1251
[17] Luozzo N D, Fontana M, Arcondo B. J Alloys Compd, 2012; 536: 564
[18] Muljono D, Ferry M, Dunne D P. Mater Sci Eng, 2001; A303: 90
[19] Lee J B, Kang N, Park J T, Ahn S T, Park Y D, Choi D, Kim K R, Cho K M. Mater Chem Phys, 2011; 129: 365
[20] Ivasishin O M, Teliovich R V. Mater Sci Eng, 1999; A263 : 142
[21] Yang B J, Hattiangadi A, Li W Z, Zhou G F, Mcgreevy T E. Mater Sci Eng, 2010; A527: 2978
[22] Ahn S T, Kim D S, Nam W J. J Mater Process Technol, 2005; 160: 54
[23] Massardier V, Ngansop A, Fabregue D, Merlin J. Mater Sci Eng, 2010; A527: 5654
[24] The Material Information Society. ASM Handbook. Vol 3, Materials Park, Ohio: ASM International, 2005: 291
[25] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., Amsterdam: Elsevier, 2004: 135
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[6] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[7] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[8] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[9] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[10] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[11] JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. 金属学报, 2021, 57(6): 703-716.
[12] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[13] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[14] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[15] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
No Suggested Reading articles found!