Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1356-1362    DOI: 10.3724/SP.J.1037.2013.00550
Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION OF Ti44Al6Nb ALLOY DIRECTIONALLY SOLIDIFIED WITH COLD CRUCIBLE
CHEN Ruirun1), WANG Jichao1,2), MA Tengfei1),GUO Jingjie1), DING Hongsheng1),SU Yanqing1), FU Hengzhi1)
1) School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
2) Tianjin Repair Technology Research Institute, CSIC, Tianjin 300456
Cite this article: 

CHEN Ruirun, WANG Jichao, MA Tengfei,GUO Jingjie, DING Hongsheng,SU Yanqing, FU Hengzhi. MICROSTRUCTURE EVOLUTION OF Ti44Al6Nb ALLOY DIRECTIONALLY SOLIDIFIED WITH COLD CRUCIBLE. Acta Metall Sin, 2013, 49(11): 1356-1362.

Download:  PDF(3637KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ti44Al6Nb (atomic fraction, %) ingots with industry size were directionally solidified without contamination with electromagnetic cold crucible. Effects of pulling rates and powers on the surface quality, the S/L interface, grain morphology and phase selection were studied. The results show that the surface quality are improved by decreasing pulling rate or increasing power, they influence the surface quality by changing the superheat degree of the melt or the volume of the mushy zone. The S/L interface becomes concave and the grain width becomes big with increasing of pulling rate, the columnar grains grow discontinuously when the pulling rate is increased. The grain width decreases with the increase of the power. Columnar grain to equiaxed grain transition (CET) is easy to occurred when the pulling rate is lower or the power is higher. At the beginning of solidification, the initial phase is αphase when the pulling rate is 0.5 mm/min, whereas, it is β phase when the pulling rates are others.

Key words:  Ti44Al6Nb alloy      cold crucible      directional solidification      microstructure     
Received:  04 September 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00550     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1356

[1] Lin J P, Zhao L L, Li G Y, Zhang L Q, Song X P, Ye F, Chen G L.Intermetallics, 2011; 19: 131

[2] Yang X, Xi Z P, Liu Y, Tang H, Hu K, Jia W P.  Trans Nonferrerous Met Soc China, 2012; 22: 2628
[3] Song L, Zhang L Q, Xu X J, Sun J, Lin J P.  Scr Mater, 2013; 68: 929
[4] Wang G, Xu L, Wang Y, Zheng Z, Cui Y Y, Yang R.  Acta Metall Sin, 2011; 47: 587
(王刚, 徐磊, 王永, 郑卓, 崔玉友, 杨锐. 金属学报, 2011; 47: 587)
[5] Lin J P, Chen G L.  Mater China, 2009; 28(1): 31
(林均品, 陈国良. 中国材料进展, 2009; 28(1): 31)
[6] Huang X, Qi L C, Li Z X.  Rare Met Mater Eng, 2006; 35: 1845
(黄旭, 齐立春, 李臻熙. 稀有金属材料与工程, 2006; 35: 1845)
[7] Wang G, Zheng Z, Chang L T, Xu L, Cui Y Y, Yang R.  Acta Metall Sin, 2011; 47: 1263
(王刚, 郑卓, 常立涛, 徐磊, 崔玉友, 杨锐. 金属学报, 2011; 47: 1263)
[8] Huang X, Qi L C, Li Z X.  Rare Met Mater Eng, 2006; 35: 1848
(黄旭, 齐立春, 李臻熙. 稀有金属材料与工程, 2006; 35: 1848)
[9] Kartavykh A V, Tcherdyntsev V V, Zollinger J.  Mater Chem Phys, 2010; 119: 347
[10] Zhang H R, Gao M, Tang X X, Zhang H.  Acta Metall Sin, 2010; 46: 890
(张花蕊, 高明, 唐晓霞, 张虎. 金属学报, 2010; 46: 890)
[11] Luo W Z, Shen J, Min Z X, Fu H Z.  Rare Met Mater Eng, 2009; 38: 1442
(罗文忠, 沈军, 闵志先, 傅恒志. 稀有金属材料与工程, 2009; 38: 1442)
[12] Yang J R, Chen R R, Ding H S, Guo J J, Su Y Q, Fu H Z.  J Mater Process Technol, 2013; 213: 1355
[13] Yang J R, Chen R R, Ding H S, Guo J J, Han J C, Fu H Z.Intermetallics, 2013; 42: 184
[14] Ding H S, G J J, Chen R R, Fu H Z.  Mater China, 2010; 29(2): 14
(丁宏升, 郭景杰, 陈瑞润, 傅恒志. 中国材料进展, 2010; 29(2): 14)
[15] Xiao Z X, Zheng L J, Yang L L, Yan J, Zhang H.  Acta Metall Sin, 2010; 46: 1223
(肖志霞, 郑立静, 杨莉莉, 闫洁, 张虎. 金属学报, 2010; 46: 1223)
[16] Ding X F, Lin J P, Zhang L Q, Wang H L, Hao G J, Chen G L.  J Alloys Compd, 2010; 506: 117
[17] Fu H Z, Guo J J, Su Y Q, Liu L, Xu D M, Li J S.  Chin J  Nonferrous Met, 2003; 13: 797
(傅恒志, 郭景杰, 苏彦庆, 刘林, 徐达鸣, 李金山. 中国有色金属学报, 2003; 13: 797)
[18] Saari H, Beddoes J, Seo D Y, Zhao L.  Intermetallics, 2005; 13: 941
[19] Ding X F, Lin J P, Zhang L Q, Su Y Q, Chen G L.  Acta Mater, 2012; 60: 498
[20] Liu D M, Li X Z, Su Y Q, Guo J J, Fu H Z.  Intermetallics, 2011; 19: 175
[21] Blackburn M.  Science, Techbology and Application of Titanium. London: Pergmin Press, 1970: 1
[22] Yamaguchi M, Johnson D R, Lee H N, Inui H.  Intermetallics, 2000; 8: 511
[23] Murakami K, Fujiyama T, Koike A, Okamoto T.  Acta Metall, 1983; 31: 1425
[24] Uhlmann D R, Seward T P, Chalmers B.  Trans Metall Soc AIME, 1996; 236: 527
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!