Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1363-1368    DOI: 10.3724/SP.J.1037.2013.00513
Current Issue | Archive | Adv Search |
THE HOT DEFORMATION BEHAVIOR OF Ti-43Al-9V-Y ALLOY
KONG Fantao, CUI Ning, CHEN Yuyong, XIONG Ningning
National Key Laboratory for Precision Hot Processing of Metals, HarbinInstitute of Technology, Harbin 150001
Cite this article: 

KONG Fantao, CUI Ning, CHEN Yuyong, XIONG Ningning. THE HOT DEFORMATION BEHAVIOR OF Ti-43Al-9V-Y ALLOY. Acta Metall Sin, 2013, 49(11): 1363-1368.

Download:  PDF(1628KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hot deformation behavior of as-cast Ti-43Al-9V-Y alloy has been studied using thermo-simulator system Gleeble-1500D in the temperature range 1100-1225℃ and strain rate range 0.01-1 s-1. It was found that the flow behavior of Ti-43Al-9V-Y alloy depends on the deformation temperature and strain rate. The flow stress-strain curves exhibit oscillations in the stage of flow softening. According to principles of dynamic materials modeling (DMM), processing maps were constructed on the basis of flow stress data. Wedge cracking was expected to be observed in the region of high strain rates with low peak efficiency (<40%). The α+β+γ→β+γ phase transformation occurring at 1150℃ and 0.01 s-1 contributes to the peak efficiency of around 60 %. The dynamic recrystallization occurred at 1200-1225℃ and 0.01-0.05 s-1 with a peak efficiency of around 80%, which is the optimum condition for the hot deformation of Ti-43Al-9V-Y alloy. Combining with the titanium and aluminum phase graphs, it could be found that 1225℃ located at the single-phase region ofα phase. The excellent hot deformability of disorderedαphase is considered to be the main reason for the improvement of hot workability of TiAl alloys. As-forged alloys have good room-temperature ductility and fracture toughness simultaneously. In addition, it has been found that B2 phase could hinder the propagation of crack without decreasing the plasticity at room temperature.

Key words:  TiAl alloy      hot deformation      hot compression      processing map      dynamic recrystallization     
Received:  26 August 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00513     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1363

[1] Clemens H, Kestler H. Adv Eng Mater, 2000; 2: 551

[2] Imayev R M, Imayev V M, Oehring M, Appel F. Intermetallics, 2007; 15: 451
[3] Kothari K, Radhakrishnan R, Wereley N M. Prog Aerosp Sci, 2012; 55: 1
[4] Kong F T, Chen Y Y, Li B H. Acta Metall Sin, 2008; 44: 815
(孔凡涛, 陈玉勇, 李宝辉. 金属学报, 2008; 44: 815)
[5] Tetsui T, Shindo K, Kobayashi S, Takeyama M. Scr Mater, 2002; 47: 399
[6] Das G, Kestler H, Clemens H, Bartolotta P A. JOM, 2004; 56: 42
[7] Krishna V G, Prasad Y V R K, Birla N C, Rao S G. J Mater Process Technol, 1997; 71: 377
[8] Momeni A, Dehghani K. Mater Sci Eng, 2010; A527: 5467
[9] Wang J, Dong J X, Zhang M C, Xie X S. Mater Sci Eng, 2013; A566: 61
[10] Ma X, Zeng W D, Tian F, Zhou Y G, Sun Y. Mater Sci Eng, 2012; A545: 132
[11] Rao K P, Prasad Y V R K, Suresh K. Mater Sci Eng, 2012; A558: 30
[12] Wang G, Xu L, Wang Y, Zheng Z, Cui Y Y, Yang R. J Mater Sci Technol, 2011; 27: 893
[13] Wang G, Xu L, Wang Y, Zheng Z, Cui Y Y, Yang R. Acta Metall Sin, 2011; 47: 587
(王刚, 徐磊, 王永, 郑卓, 崔玉友, 杨锐. 金属学报, 2011; 47: 587)
[14] Rao K P, Prasad Y V R K, Suresh K. Mater Des, 2011; 32: 4874
[15] Prasad Y V R K, Seshacharyulu T. Int Mater Rev, 1998; 43: 243
[16] Sivakesavam O, Prasad Y V R K. Mater Sci Eng, 2002; A323: 270
[17] Jazayeri G A, Davies H A, Buckley R A. Mater Sci Eng, 2004; A375: 512
[18] Doi H, Hashimoto K, Kasahara K, Tsujimoto T. Mater Trans JIM, 1990; 31: 975
[19] Kong F T, Chen Y Y, Tian J, Chen Z Y, Han J C. Chin J Rare Met, 2004; 28: 75
(孔凡涛, 陈玉勇, 田竞, 陈子勇, 韩杰才. 稀有金属, 2004; 28: 75)
[20] Zhang W J, Appel F. Mater Sci Eng, 2002; A334: 59
[21] Prasad Y V R K, Rao K P. Mater Des, 2011; 32: 1851
[22] Imayev R M, Salishchev G A, Senkov O N, Imayev V M, Shagiev M R,Gabdullin N K, Kuznetsov A V, Froes F H. Mater Sci Eng, 2001; A300: 263
[23] Kong F T, Chen Y Y, Zhang D L, Zhang S Z. Mater Sci Eng, 2012; A539: 107
[24] Takeyama M, Kobayashi S. Intermetallics, 2005; 13: 993
[25] Prasad Y V R K, Seshacharyulu T. Mater Sci Eng, 1998; A243: 82
[26] Kim Y W, Dimiduk D M. JOM, 1991; 43: 40
[27] Clemens H, Bartels A, Bystrzanowski S, Chladil H, Leitner H, Dehm G,Gerling R, Schimansky F P. Intermetallics, 2006; 14: 1380
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[4] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[5] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[6] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[7] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[8] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[9] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[10] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[11] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[12] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[13] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
[14] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[15] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
No Suggested Reading articles found!