Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (12): 1573-1580    DOI: 10.3724/SP.J.1037.2013.00509
Current Issue | Archive | Adv Search |
EFFECT OF ELECTROMAGNETIC FIELD ON MICRO-STRUCTURE AND MECHANICAL PROPERTY FOR INCONEL 625 SUPERALLOY
JIA Peng, WANG Engang, LU Hui, HE Jicheng
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819
Cite this article: 

JIA Peng, WANG Engang, LU Hui, HE Jicheng. EFFECT OF ELECTROMAGNETIC FIELD ON MICRO-STRUCTURE AND MECHANICAL PROPERTY FOR INCONEL 625 SUPERALLOY. Acta Metall Sin, 2013, 49(12): 1573-1580.

Download:  PDF(3187KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Inconel 625 is a Ni—Cr—Mo—Nb alloy which was developed primarily for high turbine applications. The elemental addition of Nb increases the solidification temperature range, which exhibits a strong propensity to form interdendritic segregation. The enrichment of elements Nb and Mo at the terminal stage of solidification leads to the formation of brittle eutectic structure, i.e., γ+Laves phases, which becomes potential crack origin during the subsequent hot processing and application. The present work has demonstrated that, the introduction of electromagnetic field (EMF) to the solidification process of Inconel 625 alloy has the obvious effect on grain refinement. The EMF can also effectively influence the segregation ratio of Nb and Mo. However, the inappropriate application of electric current intensity and frequency will lead to more severe segregation of elements Nb and Mo, which causes the increment of eutectic structure volume fraction. Further analysis illustrates that both of the grain refinement and eutectic volume fraction control the tensile property at room temperature, increasing the yield strength and decreasing the tensile plasticity for Inconel 625 alloy. It has been proven that a proper selection of input current intensity (100 A) and frequency (8 Hz) can effectively dominate the segregation behavior during solidification process under EMF with more than 30% increase of yield strength and a minute loss of plasticity.

Key words:  electromagnetic field      Inconel 625 superalloy      solidification microstructure      interdendritic segregation      tensile property     
Received:  25 August 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00509     OR     https://www.ams.org.cn/EN/Y2013/V49/I12/1573

[1] Barker J F, Cox J D, Margolin E.  Met Prog, 1968; 93: 91

[2] Eiselstein H L, Tillack D J. In: Loria E A ed.,Superalloys 718,625, and Various Derivatives, Warrendale, PA: The Minerals, Metals & Materials Society, 1991: 1
[3] Yang W H, Chen W, Chang K M. In: Pollock T M ed.,  Superalloys 2000, Nashville: The Minerals,Metals & Materials Society, 2000: 75
[4] Cieslak M J, Headley T J, Kollie T, Romig A D.  Metall Mater Trans, 1988; 19A: 2319
[5] Dupont J N.  Metall Mater Trans, 1996; 27A: 3612
[6] Dong J X, Zhang M C, Zeng Y P, Xie X S.  Acta Metall Sin (Engl Lett), 2005; 18: 47
[7] Guo J T.  Materials Science and Engineering for Superalloys (Volume 2). Beijing: Science Press, 2008: 1
(郭建亭. 高温合金材料学(中册). 北京: 科学出版社, 2008: 1)
[8] Flemings M C.  Solidification Processing. New York: McGraw—Hill, 1974: 38
[9] Flemings M C.  ISIJ Int, 2000; 40: 833
[10] Xu F J, Lv Y H, Liu Y X, Shu F Y, He P, Xu B S.  J Mater Sci Technol, 2013; 29: 480
[11] Moffatt H K.  Phys Fluids, 1991; 3A: 1336
[12] Metana V, Eigenfelda K, R$\ddot{\rm a$bigerb D, Leonhardtb M, Eckertb S.J Alloys Compd, 2009; 487: 163
[13] Wang X D, Li T J, Jin J Z.  Acta Metall Sin, 2001; 37: 971
(王晓东, 李廷举, 金俊泽. 金属学报, 2001; 37: 971)
[14] Jin W Z, Li J, Li T J, Yin G M.  J Vac Sci Technol Sin, 2008; (6): 28
(金文中, 李军, 李廷举, 殷国茂. 真空科学与技术学报, 2008; (6): 28)
[15] Chang K M, Lai H J, Hwang J Y. In: Loria E A ed., Superalloys 718,625, and Various Derivatives, Nashville: The Minerals,Metals & Materials Society, 1994: 683
[16] Schneider M C, Gu J P, Beckermann C, Boettinger W J, Kattner U R.Metall Mater Trans, 1997; 28A: 1517
[17] Cieslak M J, Knorovsky G A, Headley T J, Romig A D. In: Loria E A ed.,Superalloys 718, Nashville: The Minerals, Metals $\&$ Materials Society, 1989: 59
[18] Garabedian H, Strick—Constable R F J.  J Cryst Growth, 1974; 22: 188
[19] Xin X, Huang A H, Qi F, Zhang W H, Liu F, Yang H C, Sun W R, Hu Z Q.Acta Metall Sin, 2010; 46: 873
(信昕, 黄爱华, 祁峰, 张伟红, 刘芳, 杨洪才, 孙文儒, 胡壮麒. 金属学报,2010; 46: 873)
[20] Guo D Y, Yang Y S, Tong W H, Hua F A, Cheng G F, Hu Z Q.  Acta Metall Sin, 2003; 39: 914
(郭大勇, 杨院生, 童文辉, 花福安, 程根发, 胡壮麒. 金属学报, 2003; 39: 914)
[21] Xiong Y H, Li P J, Yang A M, Yan W D, Zeng D B, Liu L.  Acta Metall Sin, 2002, 38: 534
(熊玉华, 李培杰, 杨爱民, 严卫东, 曾大本, 刘林. 金属学报, 2002; 38: 534)
[22] Epishin A, Link T, Bruckner U, Fedelich B, Portella P. In: Green K A ed.,Superalloys 718, Nashville: The Minerals, Metals & Materials Society, 2004: 537
[23] Nader E B, Yamamoto K, Miyahara H, Keisaku O.  Mater Trans, 2005; 46: 909
[24] Chen W.  PhD Dissertation, West Virginia University, 2006

[25] Kaddah N E, Natarajan T T. In: Cleary P W ed.,Second International Conference on CFD in the Minerals and Process Industries, Melbourne: CSIRO, 1999: 339

[1] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[2] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[3] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[4] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[5] ZHENG Qiuju, YE Zhongfei, JIANG Hongxiang, LU Ming, ZHANG Lili, ZHAO Jiuzhou. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys[J]. 金属学报, 2021, 57(1): 103-110.
[6] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[7] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[8] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[9] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[10] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[11] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[12] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[13] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[14] Ran TAO, Yutao ZHAO, Gang CHEN, Xizhou KAI. Microstructure and Properties of In-Situ ZrB2 np/AA6111 Composites Synthesized Under an Electromagnetic Field[J]. 金属学报, 2019, 55(1): 160-170.
[15] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
No Suggested Reading articles found!