Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (5): 637-646    DOI: 10.11900/0412.1961.2017.00503
Special Issue for the Solidification of Metallic Materials Current Issue | Archive | Adv Search |
Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification
Guohua WU(), Yushi CHEN, Wenjiang DING
National Engineering Research Center of Light Alloys Net Forming, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
Download:  HTML  PDF(8022KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The researches on development, application and solidification microstructures of high performance magnesium (Mg) alloys have received considerable interest recently. The solidification microstructures of Mg alloys can be effectively controlled by using directional solidification technology, rapid solidification technology and the application of external field during solidification, and thus the enhanced comprehensive mechanical properties of the materials are obtained. The current researches on solidification microstructure controlling of high performance Mg alloys by using directional solidification technology, rapid solidification technology and electromagnetic stirring were reviewed. Finally, the development trend on the controlling of solidification microstructure was proposed.

Key words:  magnesium alloy      solidification microstructure      directional solidification      rapid solidification      electromagnetic stirring     
Received:  28 November 2017     
ZTFLH:  TG146.2  
Fund: Supported by National Natural Science Foundation of China (No.51775334)

Cite this article: 

Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification. Acta Metall Sin, 2018, 54(5): 637-646.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00503     OR     https://www.ams.org.cn/EN/Y2018/V54/I5/637

Fig.1  Segmented primary α-Mg columnar dendrite and its secondary arms from sCT tomogram of a directionally solidified Mg-38%Zn alloy [7]
(a) expected six-fold crystallography and growth directions
(b) 3D rendering of the seven secondary arm side branches marked D1~D7, growth direction into the page
(c) primary dendrite oriented in the vertical direction
(d~j) morphologies of each of the seven secondary arms side branches and their angles relative to the stem (Figs.1d, f and i: ~54°; Figs.1e and j: ~81°; Figs.1g and h: ~60°; Figs.1d~j have the same scale)
Fig.2  Microstructural evolutions in solidification of Mg-6%Gd alloy under cooling rates R=0.033 K/s (a1~a3), R=0.1 K/s (b1~b3) and R=0.25 K/s (c1~c3) at different time, where t0 is the beginning time of solidification[19]
Alloy Tg / K Tx / K ΔTx / K Ref.
Mg58.5Cu30.5Y11 425 495 67 [26]
Mg60Cu25Y10 420 490 70 [34]
Mg65Cu25Y10 418 468 50 [35,36]
Mg61Cu28Gd11 422 483 61 [37]
Mg65Ni20Nd15 459.3 501.4 42.1 [38]
Mg85Ni5Y10 450 467 17 [39]
Mg70Zn30 352 374 22 [40]
Mg67Zn28Ca5 359 374 15 [40]
Mg65Cu15Y10Ag10 428 469 41 [41]
(Mg61Cu28Gd11)97Cd2 426 496 70 [42]
Mg65Cu20Zn5Y10 404 456 52 [43]
Mg59.5Cu22.9Ag6.6Gd11 425 472 47 [44]
Mg66Zn30Ca2.5Sr1.5 369 386 17 [45]
Mg66Zn29Ca4Ag1 369 383 14 [46]
(Mg0.585Cu0.305Y0.11)90Be10 428 478 50 [26]
Mg65Cu12.5Ag5Gd10Ni7.5 428.1 490.8 62.7 [47]
Mg65Cu7.5Ni7.5Zn5Ag5Y10 422 463 41 [48]
(Mg0.98Al0.02)60Cu30Y10 418 454 36 [49]
Table 1  Representative Mg-based amorphous alloys and the thermodynamic data[26,34~49]
Fig.3  Representative micrographs of the NZ30 alloy slurries at different stirring time of 30 s (a), 60 s (b), 120 s (c) and 180 s (d)[75]
Fig.4  Schematic diagram showing the formation of primary α-Mg phases in NZ30 alloy slurries during electromagnetic stirring[75]
Fig.5  Microstructures of AZX912 semi-solid slurry prepared by gas bubbling process under different gas flow levels of 2 L/min (a), 4 L/min (b) and 6 L/min (c)[82]
[1] Ding W J.Science and Technology of Magnesium Alloys [M]. Beijing: Science Press, 2007: 365(丁文江. 镁合金科学与技术 [M]. 北京: 科学出版社, 2007: 365)
[2] Pollock T M.Weight loss with magnesium alloys[J]. Science, 2010, 328: 986
[3] Jing T, Shuai S S, Wang M Y, et al.Research progress on 3D dendrite morphology and orientation selection during the solidification of Mg alloys: 3D experimental characterization and phase field modeling[J]. Acta Metall. Sin., 2016, 52: 1279(荆涛, 帅三三, 汪明月等. 镁合金凝固过程三维枝晶形貌和生长取向研究进展: 三维实验表征和相场模拟[J]. 金属学报, 2016, 52: 1279)
[4] Wu G H, Chen Y S, Ding W J.Current research, application and future prospect of magnesium alloys in aerospace industry[J]. Manned Spaceflight, 2016, 22: 281(吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望[J]. 载人航天, 2016, 22: 281)
[5] Xiao L, Yi S.Effect of alloying element Al on the microstructure, grain orientations and mechanical properties of magnesium alloys[J]. Foundry, 2016, 65: 955(肖璐, 易圣. 合金元素Al对定向凝固镁合金组织、晶粒取向和力学性能的影响[J]. 铸造, 2016, 65: 955)
[6] Jia H M, Feng X H, Yang Y S.Microstructure and corrosion resistance of directionally solidified Mg-2wt.%Zn alloy[J]. Corros. Sci., 2017, 120: 75
[7] Shuai S S, Guo E Y, Wang M Y, et al.Anomalous α-Mg dendrite growth during directional solidification of a Mg-Zn alloy[J]. Metall. Mater. Trans., 2016, 47A: 4368
[8] Yang M, Xiong S M, Guo Z.Effect of different solute additions on dendrite morphology and orientation selection in cast binary magnesium alloys[J]. Acta Mater., 2016, 112: 261
[9] Wang M Y, Xu Y J, Jing T, et al.Growth orientations and morphologies of α-Mg dendrites in Mg-Zn alloys[J]. Scr. Mater., 2012, 67: 629
[10] Liu S J.Researches on the solidification characteristic and mechanical properties of Mg-Zn-Gd-based magnesium alloy [D]. Xi'an: Northwestern Polytechnical University, 2016(刘少军. Mg-Zn-Gd系镁合金的凝固特性及其力学性能研究 [D]. 西安: 西北工业大学, 2016)
[11] Yang G Y, Luo S F, Liu S J, et al.Microstructural evolution, phase constitution and mechanical properties of directionally solidified Mg-5.5Zn-xGd (x=0.8, 2.0, and 4.0) alloys[J]. J. Alloys Compd., 2017, 725: 145
[12] Kumar D S, Sasanka C T, Ravindra K, et al.Magnesium and its alloys in automotive applications—A review[J]. Am. J. Mater. Sci. Technol., 2015, 4: 12
[13] B?ttger B, Eiken J, Ohno M, et al.Controlling microstructure in magnesium alloys: A combined thermodynamic, experimental and simulation approach[J]. Adv. Eng. Mater., 2006, 8: 241
[14] Mabuchi M, Kobata M, Chino Y, et al.Tensile properties of directionally solidified AZ91 Mg alloy[J]. Mater. Trans., 2003, 44: 436
[15] Paliwal M, Jung I H.The evolution of the growth morphology in Mg-Al alloys depending on the cooling rate during solidification[J]. Acta Mater., 2013, 61: 4848
[16] Pettersen K, Lohne O, Ryum N.Dendritic solidification of magnesium alloy AZ91[J]. Mater. Trans., 1990, 21A: 221
[17] Cao H B, Zhang C, Zhu J, et al.A computational/directional solidification method to establish saddle points on the Mg-Al-Ca liquidus[J]. Scr. Mater., 2008, 58: 397
[18] Zheng X W, Luo A A, Zhang C, et al.Directional solidification and microsegregation in a magnesium-aluminum-calcium alloy[J]. Metall. Mater. Trans., 2012, 43A: 3239
[19] Wang Y B, Peng L M, Ji Y Z, et al.The effect of low cooling rates on dendrite morphology during directional solidification in Mg-Gd alloys: In situ X-ray radiographic observation[J]. Mater. Lett., 2016, 163: 218
[20] Luo S F, Yang G Y, Liu S J, et al.Microstructure evolution and mechanical properties of directionally solidified Mg-xGd (x=0.8, 1.5, and 2.5) alloys[J]. Mater. Sci. Eng., 2016, A662: 241
[21] Wang J A, Wang J H, Song Z G.Microstructures and microsegregation of directionally solidified Mg-1.5Gd magnesium alloy with different growth rates[J]. Rare Met. Mater. Eng., 2017, 46: 12
[22] Wu R, Yan Y, Wang G, et al.Recent progress in magnesium-lithium alloys[J]. Int. Mater. Rev., 2015, 60: 65
[23] Liu D, Zhang H W, Li Y X, et al.Effects of composition and growth rate on the microstructure transformation of β-rods/lamellae/α-rods in directionally solidified Mg-Li alloy[J]. Mater. Des., 2017, 119: 199
[24] Chen Z H, Zhou T, Chen D.Research progress in rapidly solidified high-performance magnesium alloy-magnesium alloy with long-period stacking order structure[J]. Mater. Rev., 2007, 21(11): 50(陈振华, 周涛, 陈鼎. 快速凝固高性能镁合金研究进展——长周期堆垛有序结构镁合金[J]. 材料导报, 2007, 21(11): 50)
[25] Wang X J, Chen X D, Wang X L, et al.Research and development of bulk Mg-based amorphous alloys[J]. Mater. Rev., 2004, 18(4): 77(王晓军, 陈学定, 王晓丽等. 大块镁基非晶态合金的研究进展[J]. 材料导报, 2004, 18(4): 77)
[26] Wang L.The microstructure and mechanical properties of Mg-based glass matrix composites [D]. Shenyang: Shenyang University of Technology, 2014(王琳. 镁基非晶复合材料微观结构与力学性能 [D]. 沈阳: 沈阳工业大学, 2014)
[27] Yu K, Li W X, Wang R C, et al.Research theory and development of rapidly solidified magnesium alloy[J]. Chin. J. Nonferrous Met., 2007, 17: 1025(余琨, 黎文献, 王日初等. 快速凝固镁合金开发原理及研究进展[J]. 中国有色金属学报, 2007, 17: 1025)
[28] Sun Y D, Li Z Q, Liu J S, et al.Crystallization kinetics of Mg61Cu28Gd11 and (Mg61Cu28Gd11) 99.5Sb0.5 bulk metallic glasses[J]. J. Alloys Compd., 2010, 506: 302
[29] Haferkamp H, Boehm R, Holzkamp U, et al.Alloy development, processing and applications in magnesium lithium alloys[J]. Mater. Trans., 2001, 42: 1160
[30] Kawamura Y, Hayashi K, Inoue A, et al.Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa[J]. Mater. Trans., 2001, 42: 1172
[31] Hui X, Dong W, Chen G L, et al.Formation, microstructure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites[J]. Acta Mater., 2007, 55: 907
[32] Inoue A.Stabilization and high strain-rate superplasticity of metallic supercooled liquid[J]. Mater. Sci. Eng., 1999, A267: 171
[33] Ma H, Shi L L, Xu J, et al.Discovering inch-diameter metallic glasses in three-dimensional composition space[J]. Appl. Phys. Lett., 2005, 87: 181915
[34] Inoue A, Nakamura T, Nishiyama N, et al.Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method[J]. Mater. Trans., 1992, 33: 937
[35] Busch R, Liu W, Johnson W L.Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid[J]. J. Appl. Phys., 1998, 83: 4134
[36] Inoue A, Kato A, Zhang T, et al.Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method[J]. Mater. Trans., 1991, 32: 609
[37] Zheng Q, Xu J, Ma E.High glass-forming ability correlated with fragility of Mg-Cu(Ag)-Gd alloys[J]. J. Appl. Phys., 2007, 102: 113519
[38] Lu Z P, Li Y, Ng S C.Reduced glass transition temperature and glass forming ability of bulk glass forming alloys[J]. J. Non-Cryst. Solids, 2000, 270: 103
[39] Kim S G, Inoue A, Masumoto T.High mechanical strengths of Mg-Ni-Y and Mg-Cu-Y amorphous alloys with significant supercooled liquid region[J]. Mater. Trans., 1990, 31: 929
[40] Laws K J, Granata D, L?ffler J F.Alloy design strategies for sustained ductility in Mg-based amorphous alloys—Tackling structural relaxation[J]. Acta Mater., 2016, 103: 735
[41] Kang H G, Park E S, Kim W T, et al.Fabrication of bulk Mg-Cu-Ag-Y glassy alloy by squeeze casting[J]. Mater. Trans., 2000, 41: 846
[42] Sun Y D, Chen Q R, Li G Z.Enhanced glass forming ability and plasticity of Mg-based bulk metallic glass by minor addition of Cd[J]. J. Alloys Compd., 2014, 584: 273
[43] Men H, Hu Z Q, Xu J.Bulk metallic glass formation in the Mg-Cu-Zn-Y system[J]. Scr. Mater., 2002, 46: 699
[44] Ma H, Fecht H J.Thermodynamic and kinetic fragilities of Mg-based bulk metallic glass-forming liquids[J]. J. Mater. Res., 2008, 23: 2816
[45] Li H F, Pang S J, Liu Y, et al.Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications[J]. Mater. Des., 2015, 67: 9
[46] Li H F, Pang S J, Liu Y, et al.In vitro investigation of Mg-Zn-Ca-Ag bulk metallic glasses for biomedical applications[J]. J. Non-Cryst. Solids, 2015, 427: 134
[47] Pan D G, Liu W Y, Zhang H F, et al.Mg-Cu-Ag-Gd-Ni bulk metallic glass with high mechanical strength[J]. J. Alloys Compd., 2007, 438: 142
[48] Ma H, Ma E, Xu J.A new Mg65Cu7.5Ni7.5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability[J]. J. Mater. Res., 2003, 18: 2288
[49] Ohnuma M, Pryds N H, Linderoth S, et al.Bulk amorphous (Mg0.98Al0.02)60Cu30Y10 alloy[J]. Scr. Mater., 1999, 41: 889
[50] Tang M B, Zhao J T.Thermodynamic behavior of glass-forming metallic supercooled liquids[J]. Physica, 2013, 426B: 1
[51] Wang S G, Shi L L, Xu J.Mg-based bulk metallic glasses: Elastic properties and their correlations with toughness and glass transition temperature[J]. J. Mater. Res., 2011, 26: 923
[52] Liu G B, Gao P, Yang S Q, et al.Effects of Zn addition on the glass forming ability and mechanical properties of Mg-Cu-Gd bulk metallic glasses[J]. J. Alloys Compd., 2014, 588: 59
[53] Liu K M, Zhou H T, Yang B, et al.Influence of Si on glass forming ability and properties of the bulk amorphous alloy Mg60Cu30Y10[J]. Mater. Sci. Eng., 2010, A527: 7475
[54] Dambatta M S, Izman S, Yahaya B, et al.Mg-based bulk metallic glasses for biodegradable implant materials: A review on glass forming ability, mechanical properties, and biocompatibility[J]. J. Non-Cryst. Solids, 2015, 426: 110
[55] Matias T B, Roche V, Nogueira R P, et al.Mg-Zn-Ca amorphous alloys for application as temporary implant: Effect of Zn content on the mechanical and corrosion properties[J]. Mater. Des., 2016, 110: 188
[56] De Oliveira M F, Pereira F S, Bolfarini C, et al. Topological instability, average electronegativity difference and glass forming ability of amorphous alloys[J]. Intermetallics, 2009, 17: 183
[57] De Oliveira M F. A new correlation between electronic parameters and glass forming ability of metallic alloys[J]. Philos. Mag. Lett., 2011, 91: 418
[58] Nascimento C O S, Jorge A M. New criterion for prediction of amorphous alloy compositions: A combination of dense packing of spheres and the lambda criterion through the coordination number[J]. Appl. Mech. Mater., 2014, 698: 411
[59] Zhang Y H, Wang H T, Zhai T T, et al.Hydrogen storage characteristics of the nanocrystalline and amorphous Mg-Nd-Ni-Cu-based alloys prepared by melt spinning[J]. Int. J. Hydrogen Energy, 2014, 39: 3790
[60] Zhang B, Lv Y J, Yuan J G, et al.Effects of microstructure on the hydrogen storage properties of the melt-spun Mg-5Ni-3La (at.%) alloys[J]. J. Alloys Compd., 2017, 702: 126
[61] Wu D C, Liang G Y, Li L, et al.Microstructural investigation of electrochemical hydrogen storage in amorphous Mg-Ni-La alloy[J]. Mater. Sci. Eng., 2010, B175: 248
[62] Sun M.Study on grain refinement behavior of Mg-Gd-Y magnesium alloy by Zirconium [D]. Shanghai: Shanghai Jiao Tong University, 2012(孙明. Mg-Gd-Y镁合金Zr晶粒细化行为研究 [D]. 上海: 上海交通大学, 2012)
[63] Dai J C.Study on the effects of Al and trace elements on grain refinement behavior, microstructure and mechanical properties of Mg-Gd(-Y) alloys [D]. Shanghai: Shanghai Jiao Tong University, 2014(戴吉春. Al及微量元素对Mg-Gd(-Y)合金晶粒细化行为、组织及力学性能影响的研究 [D]. 上海: 上海交通大学, 2014)
[64] Pang S.Study on solidification behavior and grain refining mechanism of sand-cast Mg-Gd-Y alloys [D]. Shanghai: Shanghai Jiao Tong University, 2015(庞松. 砂型铸造Mg-Gd-Y合金凝固行为与晶粒细化机制研究 [D]. 上海: 上海交通大学, 2015)
[65] Zhang Y.Study on microstructure and mechanical behavior of rheo-squeeze casting AZ91-Ca alloys [D]. Shanghai: Shanghai Jiao Tong University, 2015(张扬. 流变挤压铸造AZ91-Ca合金微观组织和力学行为研究 [D]. 上海: 上海交通大学, 2015)
[66] Zhang Y, Wu G H, Liu W C, et al.Microstructure and mechanical properties of rheo-squeeze casting AZ91-Ca magnesium alloy prepared by gas bubbling process[J]. Mater. Des., 2015, 67: 1
[67] Zhang L, Wu G H, Wang S H, et al.Effect of cooling condition on microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2357
[68] Fang X G, Wu S S, Lü S L, et al.Microstructure evolution and mechanical properties of quasicrystal-reinforced Mg-Zn-Y alloy subjected to ultrasonic vibration[J]. Mater. Sci. Eng., 2017, A679: 372
[69] Wang C L, Chen A T, Zhang L, et al.Preparation of an Mg-Gd-Zn alloy semisolid slurry by low frequency electro-magnetic stirring[J]. Mater. Des., 2015, 84: 53
[70] Zhang X L, Li T J, Teng H T, et al.Semisolid processing AZ91 magnesium alloy by electromagnetic stirring after near-liquidus isothermal heat treatment[J]. Mater. Sci. Eng., 2008, A475: 194
[71] Yao L, Hao H, Gu S W, et al.Effects of electromagnetic stirring on microstructure and mechanical properties of super light Mg-Li-Al-Zn alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20(Suppl.2): s388
[72] Liu S F, Kang L G, Han H, et al.Influence of electromagnetic stirring on microstructure of AZ91-0.8%Ce magnesium alloy[J]. J. Cent. South. Univ. Technol., 2006, 13: 613
[73] Liu S F, Liu L Y, Kang L G.Refinement role of electromagnetic stirring and strontium in AZ91 magnesium alloy[J]. J. Alloys Compd., 2008, 450: 546
[74] Mao W M, Zhen Z S, Chen H T, et al.Microstructure of electromagnetic stirred semi-solid AZ91D alloy[J]. Trans. Nonferrous Met. Soc. China, 2004, 14: 846
[75] Chen Y S, Zhang L, Liu W C, et al.Preparation of Mg-Nd-Zn-(Zr) alloys semisolid slurry by electromagnetic stirring[J]. Mater. Des., 2016, 95: 398
[76] Li M, Tamura T, Miwa K.Controlling microstructures of AZ31 magnesium alloys by an electromagnetic vibration technique during solidification: From experimental observation to theoretical understanding[J]. Acta Mater., 2007, 55: 4635
[77] StJohn D H, Qian M A, Easton M A, et al. Grain refinement of magnesium alloys[J]. Metall. Mater. Trans., 2005, 36A: 1669
[78] StJohn D H, Easton M A, Qian M, et al. Grain refinement of magnesium alloys: A review of recent research, theoretical developments, and their application[J]. Metall. Mater. Trans., 2013, 44A: 2935
[79] StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection[J]. Acta Mater., 2011, 59: 4907
[80] Zhang Z Q, Yue Q C, Cui J Z, et al.Solidification and Preparation of Magnesium Alloy under Physical Field [M]. Beijing: Science Press, 2014: 7(张志强, 岳启炽, 崔建忠等. 镁合金科学与技术 [M]. 北京: 科学出版社, 2014: 7)
[81] Wannasin J, Martinez R A, Flemings M C.Grain refinement of an aluminum alloy by introducing gas bubbles during solidification[J]. Scr. Mater., 2006, 55: 115
[82] Zhang Y, Wu G H, Liu W C, et al.Microstructure and mechanical properties of rheo-squeeze casting AZ91-Ca magnesium alloy prepared by gas bubbling process[J]. Mater. Des., 2015, 67: 1
[1] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[2] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[3] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[4] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[5] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[6] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[7] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[8] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[9] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[10] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[11] Yuan HOU, Zhongming REN, Jiang WANG, Zhenqiang ZHANG, Xia LI. Effect of Longitudinal Static Magnetic Field on the Columnar to Equiaxed Transition in Directionally Solidified GCr15 Bearing Steel[J]. 金属学报, 2018, 54(5): 801-808.
[12] Guang CHEN, Gong ZHENG, Zhixiang QI, Jinpeng ZHANG, Pei LI, Jialin CHENG, Zhongwu ZHANG. Research Progress on Controlled Solidificationand Its Applications[J]. 金属学报, 2018, 54(5): 669-681.
[13] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[14] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
[15] Lin LIU, Dejian SUN, Taiwen HUANG, Yanbin ZHANG, Yafeng LI, Jun ZHANG, Hengzhi FU. Directional Solidification Under High Thermal Gradient and Its Application in Superalloys Processing[J]. 金属学报, 2018, 54(5): 615-626.
No Suggested Reading articles found!