Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (5): 683-692    DOI: 10.11900/0412.1961.2019.00278
Current Issue | Archive | Adv Search |
Tensile Properties of Selective Laser Melted 316L Stainless Steel
YU Chenfan1, ZHAO Congcong1, ZHANG Zhefeng2, LIU Wei1()
1.School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(3487KB) 
Export:  BibTeX | EndNote (RIS)      

Selective laser melting (SLM), as the most common additive manufacturing (AM) method, is capable of manufacturing metallic components with complex shape layer by layer. Compared with conventional manufacturing technologies such as casting or forging, the SLM technology has the advantages of high degree accuracy, high material utilization rate and environmentally friendly, and has attracted great attention in the fields of aerospace, nuclear power and medicine. The 316L austenitic stainless steel is widely used in the industrial field because of the excellent corrosion resistance and plasticity. It is also one of the commonly used material systems for SLM. In this work, the tensile properties and fracture mechanism of 316L stainless steel fabricated via SLM technology were investigated. The microstructure of the SLMed 316L specimens after tensile fracture was characterized and analyzed. The results show that the SLMed 316L stainless steel has a relatively desirable combination of strength and ductility, and its tensile performance is obviously better than that of 316L stainless steel prepared by traditional methods. The nanometer-scale cell structure inside the grain contributes to the improvement of strength. Deformation twins were observed in the SLMed 316L stainless steel after tensile test. The appearance of twins is oriented-dependent, and it is easy to occur in the grain with the direction near <110>-<111>.

Key words:  selective laser melting      316L stainless steel      tensile property      deformation twinning     
Received:  19 August 2019     
ZTFLH:  TG142  
Fund: National Magnetic Confinement Fusion Science Program of China(2014GB117000)
Corresponding Authors:  LIU Wei     E-mail:

Cite this article: 

YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel. Acta Metall Sin, 2020, 56(5): 683-692.

URL:     OR

Fig.1  Schematic of tensile sample (unit: mm)
Fig.2  Low (a) and high (b) magnified SEM images of 316L stainless steel powders
Fig.3  SEM images showing the cellular structures in selective laser melted (SLMed) 316L stainless steel
(a) cellular structures (top side)
(b) cellular structures near grain boundary (lateral side)
(c) cellular structures near melt pool boundary (lateral side)
Fig.4  Tensile engineering stress-strain curves of 316L stainless steel fabricated by SLM









106 J·m-3

Horizontally built665.955053.2337.8
Vertically built575.452071.9431.2
Table 1  Tensile properties of SLMed 316L stainless steel with different building directions
Fig.5  Comparisons of tensile properties of SLMed 316L stainless steel and counterparts fabricated by traditional methods[22,23,24,25,26,27,28]
Fig.6  Low (a, b) and high (c, d) magnified SEM images showing the tensile fracture surfaces of vertically built (a, c) and horizontally built (b, d) SLMed 316L stainless steel samples (Figs.6b and d indicate dimple fracture and pore defect, respectively)
Fig.7  EBSD analyses of SLMed 316L stainless steel with different building directions after tensile fracture
Color online
(a) inverse pole figure (IPF) orientation map of horizontally built sample
(b) band contrast map of horizontally built sample
(c) IPF orientation map of vertically built sample
(d) band contrast map of vertically built sample (IPF∥loading direction, the red lines represent twin boundaries)
Fig.8  Misorientation distributions of SLMed 316L stainless steel with different building directions before (a) and after (b) tensile fracture
Fig.9  EBSD IPF orientation map (a) and diffraction band contrast maps (b, c) of SLMed 316L stainless steel (horizontally built sample) after tensile deformation, and misorientation result for line AB in Fig.9c (d) (Fig.9c shows the enlarged view of square area in Fig.9b, the red lines in Fig.9b and c represent twin boundaries)
Color online
Fig.10  IPF along tensile axis direction showing the grain orientations obtained from SLMed 316L stainless steel (horizontally built sample)
Color online
1 Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance [J]. Acta Mater., 2017, 125: 390
2 Gao P, Wei K W, Yu H C, et al. Influence of layer thickness on microstructure and mechanical properties of selective laser melted Ti-5Al-2.5Sn alloy [J]. Acta Metall. Sin., 2018, 54: 999
高 飘, 魏恺文, 喻寒琛等. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律 [J]. 金属学报, 2018, 54: 999
3 Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metall. Sin., 2017, 53: 918
张文奇, 朱海红, 胡志恒等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53: 918
4 Tomus D, Rometsch P A, Heilmaier M, et al. Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting [J]. Addit. Manuf., 2017, 16: 65
pmid: 15414158
5 Zhang Y J, Wang H B, Song X Y, et al. Preparation and performance of spherical Ni powder for SLM processing [J]. Acta Metall. Sin., 2018, 54: 1833
张亚娟, 王海滨, 宋晓艳等. SLM球形Ni粉的制备与打印工艺性能 [J]. 金属学报, 2018, 54: 1833
doi: 10.11900/0412.1961.2018.00153
6 Zhou X, Li K L, Zhang D D, et al. Textures formed in a CoCrMo alloy by selective laser melting [J]. J. Alloys Compd., 2015, 631: 153
doi: 10.1016/ pmid: 24598762
7 Wang D Z, Yu C F, Ma J, et al. Densification and crack suppression in selective laser melting of pure molybdenum [J]. Mater. Des., 2017, 129: 44
8 Zhou X, Liu X H, Zhang D D, et al. Balling phenomena in selective laser melted tungsten [J]. J. Mater. Process. Technol., 2015, 222: 33
9 Krakhmalev P, Yadroitsava I, Fredriksson G, et al. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels [J]. Mater. Des., 2015, 87: 380
10 Sun Y, Hebert R J, Aindow M. Non-metallic inclusions in 17-4PH stainless steel parts produced by selective laser melting [J]. Mater. Des., 2018, 140: 153
doi: 10.1196/annals.1415.006 pmid: 17496063
11 Lai C L, Tsay L W, Chen C. Effect of microstructure on hydrogen embrittlement of various stainless steels [J]. Mater. Sci. Eng., 2013, A584: 14
doi: 10.3390/ma13071643 pmid: 32252282
12 Guo S, Han E H, Wang H T, et al. Life prediction for stress corrosion behavior of 316L stainless steel elbow of nuclear power plant [J]. Acta Metall. Sin., 2017, 53: 455
郭 舒, 韩恩厚, 王海涛等. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测 [J]. 金属学报, 2017, 53: 455
13 Casati R, Lemke J, Vedani M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting [J]. J. Mater. Sci. Technol., 2016, 32: 738
14 Kong D C, Dong C F, Ni X Q, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes [J]. J. Mater. Sci. Technol., 2019, 35: 1499
15 Scipioni Bertoli U, MacDonald B E, Schoenung J M. Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel [J]. Mater. Sci. Eng., 2019, A739: 109
16 Shamsujjoha M, Agnew S R, Fitz-Gerald J M, et al. High strength and ductility of additively manufactured 316L stainless steel explained [J]. Metall. Mater. Trans., 2018, 49A: 3011
17 Suryawanshi J, Prashanth K G, Ramamurty U. Mechanical behavior of selective laser melted 316L stainless steel [J]. Mater. Sci. Eng., 2017, A696: 113
18 Salman O O, Gammer C, Chaubey A K, et al. Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting [J]. Mater. Sci. Eng., 2019, A748: 205
19 Niendorf T, Leuders S, Riemer A, et al. Highly anisotropic steel processed by selective laser melting [J]. Metall. Mater. Trans., 2013, 44B: 794
20 Liu L F, Ding Q Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength-ductility trade-off [J]. Mater. Today, 2018, 21: 354
doi: 10.1016/j.mattod.2017.11.004
21 Mullins W W, Sekerka R F. Stability of a planar interface during solidification of a dilute binary alloy [J]. J. Appl. Phys., 1964, 35: 444
22 Yao T Z, Xu T H, Wang D H. Effects of yield ratio rising on use security of pipeline steel [J]. Mater. Mech. Eng., 2012, 36(8): 62
姚婷珍, 许天旱. 王党会. 屈强比升高对管线钢使用安全性的影响 [J]. 机械工程材料, 2012, 36(8): 62
23 Lu L, Li Z B, Bi Z Y, et al. Relationship between tension toughness and fracture toughness of low alloy steel [J]. J. Iron Steel Res., 2014, 26(6): 67
芦 琳, 李周波, 毕宗岳等. 低碳低合金钢的静力韧度与断裂韧度 [J]. 钢铁研究学报, 2014, 26(6): 67
24 Gu D D, Chen H Y. Selective laser melting of high strength and toughness stainless steel parts: The roles of laser hatch style and part placement strategy [J]. Mater. Sci. Eng., 2018, A725: 419
25 Roland T, Retraint D, Lu K, et al. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability [J]. Mater. Sci. Eng., 2007, A445-446: 281
26 Brass A M, Chêne J. Hydrogen uptake in 316L stainless steel: Consequences on the tensile properties [J]. Corros. Sci., 2006, 48: 3222
27 Chen X H, Lu J, Lu L, et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel [J]. Scr. Mater., 2005, 52: 1039
28 Hong S G, Lee S B. The tensile and low-cycle fatigue behavior of cold worked 316L stainless steel: Influence of dynamic strain aging [J]. Int. J. Fatigue, 2004, 26: 899
29 Maloy S A, James M R, Willcutt G, et al. The mechanical properties of 316L/304L stainless steels, Alloy 718 and Mod 9Cr-1Mo after irradiation in a spallation environment [J]. J. Nucl. Mater., 2001, 296: 119
30 Panda S S, Singh V, Upadhyaya A, et al. Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and microwave furnaces [J]. Scr. Mater., 2006, 54: 2179
doi: 10.1016/j.scriptamat.2006.02.034
31 Stinville J C, Cormier J, Templier C, et al. Monotonic mechanical properties of plasma nitrided 316L polycrystalline austenitic stainless steel: Mechanical behaviour of the nitrided layer and impact of nitriding residual stresses [J]. Mater. Sci. Eng., 2014, A605: 51
32 Zhang M, Sun C N, Zhang X, et al. Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters [J]. Mater. Sci. Eng., 2017, A703: 251
33 Matthews M J, Guss G, Khairallah S A, et al. Denudation of metal powder layers in laser powder bed fusion processes [J]. Acta Mater., 2016, 114: 33
34 Khairallah S A, Anderson A T, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones [J]. Acta Mater., 2016, 108: 36
35 Qiu C L, Panwisawas C, Ward M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting [J]. Acta Mater., 2015, 96: 72
36 Gutierrez-Urrutia I, Zaefferer S, Raabe D. The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel [J]. Mater. Sci. Eng., 2010, A527: 3552
37 Sun S J, Tian Y Z, Lin H R, et al. Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement [J]. Mater. Sci. Eng., 2018, A712: 603
38 Li D D, Qian L H, Liu S, et al. Effect of manganese content on tensile deformation behavior of Fe-Mn-C TWIP steels [J]. Acta Metall. Sin., 2018, 54: 1777
李冬冬, 钱立和, 刘 帅等. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响 [J]. 金属学报, 2018, 54: 1777
39 de Campos M F, Loureiro S A, Rodrigues D, et al. Estimative of the stacking fault energy for a FeNi(50/50) alloy and a 316L stainless steel [J]. Mater. Sci. Forum, 2008, 591-593: 3
40 Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021 pmid: 29115290
[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[3] KE Linda,YIN Jie,ZHU Haihong,PENG Gangyong,SUN Jingli,CHEN Changpeng,WANG Guoqing,LI Zhongquan,ZENG Xiaoyan. Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting[J]. 金属学报, 2020, 56(3): 374-384.
[4] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[5] TAN Chaolin,ZHOU Kesong,MA Wenyou,ZENG Dechang. Research Progress of Laser Additive Manufacturing of Maraging Steels[J]. 金属学报, 2020, 56(1): 36-52.
[6] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[7] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[8] Dan LI, Yang LI, Rongsheng CHEN, Hongwei NI. Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER[J]. 金属学报, 2018, 54(8): 1179-1186.
[9] Piao GAO, Kaiwen WEI, Hanchen YU, Jingjing YANG, Zemin WANG, Xiaoyan ZENG. Influence of Layer Thickness on Microstructure and Mechanical Properties of Selective Laser Melted Ti-5Al-2.5Sn Alloy[J]. 金属学报, 2018, 54(7): 999-1009.
[10] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU. Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel[J]. 金属学报, 2018, 54(6): 868-876.
[11] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[12] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[13] Yajuan ZHANG, Haibin WANG, Xiaoyan SONG, Zuoren NIE. Preparation and Performance of Spherical Ni Powder for SLM Processing[J]. 金属学报, 2018, 54(12): 1833-1842.
[14] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
[15] Yongchang LIU, Hongjun ZHANG, Qianying GUO, Xiaosheng ZHOU, Zongqing MA, Yuan HUANG, Huijun LI. Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency[J]. 金属学报, 2018, 54(11): 1653-1664.
No Suggested Reading articles found!