Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (1): 160-170    DOI: 10.11900/0412.1961.2018.00288
Orginal Article Current Issue | Archive | Adv Search |
Microstructure and Properties of In-Situ ZrB2 np/AA6111 Composites Synthesized Under an Electromagnetic Field
Ran TAO, Yutao ZHAO(), Gang CHEN, Xizhou KAI
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Cite this article: 

Ran TAO, Yutao ZHAO, Gang CHEN, Xizhou KAI. Microstructure and Properties of In-Situ ZrB2 np/AA6111 Composites Synthesized Under an Electromagnetic Field. Acta Metall Sin, 2019, 55(1): 160-170.

Download:  HTML  PDF(12855KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

6xxx alloys have become of particular interest in automotive structural applications as replacements for low carbon steels, mainly because of the increasing demand for the utilization of lighter materials in the automotive industry. However, the strength and formability of the 6xxx alloy are inferior to those of fully annealed low carbon steels, which is partially due to the different crystallographic textures of these two materials. In-situ nanoparticle-reinforced composites have always been extensively used due to their high modulus, high strength, specific stiffness and excellent comprehensive properties. However, traditional in-situ methods require long reaction time and high reaction temperatures, leading to further growth or agglomeration of the reinforcement particles and decreasing the mechanical properties. In this work, in-situ ZrB2/AA6111 composites were successfully prepared via an in-situ melt reaction with the assistance of an electromagnetic field. The effect of electromagnetic field on distribution, size and morphology of in-situ particles, interface structure between particles and matrix, and dislocation morphology in composites were characterized by XRD, OM, SEM and TEM. The action mechanism of electromagnetic field and the effect of microstructure on tensile strength were analyzed. The results indicated that with the assistance of electromagnetic field during in-situ reaction, the large particle clusters were broken into smaller clusters that were uniformly distributed in the matrix, the distribution of ZrB2 nanoparticles was diffused and homogeneous with the size decreasing to 50~100 nm, and the corners of the nanoparticles clearly became obtuse. In addition, the interface between the particles and the matrix was well bonded without any impurities. The uniformity of the ZrB2 nanoparticle distribution improved, resulting in dislocation propagation and entanglement. When electromagnetic frequency was 10 Hz, the optimal ultimate tensile strength (UTS), yield strength (YS) and elongation (El) of the composites prepared under the electromagnetic field were 362 MPa, 253 MPa and 25%, respectively, correspondingly increasing 38.7%, 68.6%and 28.7% over the respective properties of the ZrB2 np/AA6111 composite. These improvements were due to the Orowan strengthening, load transmitting strengthening, grain refinement strengthening, and dislocation strengthening caused by the nano-sized ZrB2 particles synthesized under the coupled electromagnetic and ultrasonic field. In addition, the Orowan strengthening contributed most to the improvement of properties.

Key words:  aluminium matrix composite      in-situ reaction      ZrB2 nanoparticle      electromagnetic field      tensile strength     
Received:  29 June 2018     
ZTFLH:  TB331  
Fund: Supported by National Natural Science Foundation of China (Nos.U1664254, 51701085 and 51174098) and Postgraduates Research and Practice Innovation Program of Jiangsu Province (No.KYCX17_1767)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00288     OR     https://www.ams.org.cn/EN/Y2019/V55/I1/160

Fig.1  Device schematic for the in-situ fabrication of aluminum matrix composites under low electromagnetic field
Material Si Mg Fe Cu Mn Zn Cr Zr B Al
AA6111 0.76 0.75 0.20 0.78 0.25 0.1 0.10 - - Bal.
1%ZrB2/AA6111 0.78 0.80 0.23 0.78 0.20 0.1 0.12 2.5 0.70 Bal.
2%ZrB2/AA6111 0.80 0.81 0.21 0.78 0.23 0.1 0.12 4.2 1.18 Bal.
3%ZrB2/AA6111 0.82 0.79 0.18 0.78 0.20 0.1 0.12 6.5 2.89 Bal.
Table 1  Chemical compositions of AA6111 alloy and in-situ ZrB2 np/AA6111 composites prepared with electromagnetic field (mass fraction / %)
Fig.2  XRD spectra of AA6111 alloy and in-situ ZrB2 np/AA6111 composite with different volume fractions of ZrB2 particles
Fig.3  OM images (a, c, e) and grain size distributions (b, d, f) of the in-situ ZrB2 np/AA6111 composite with different volume fractions of ZrB2 particles
(a, b) 1% (c, d) 2% (e, f) 3%
Fig.4  SEM images of the in-situ ZrB2 np/AA6111 composite prepared with different electromagnetic frequencies
(a) 0 Hz (b) 5 Hz (c) 10 Hz (d) 15 Hz
Fig.5  SEM images of particles in in-situ ZrB2 np/AA6111 composite prepared with different electromagnetic frequencies
(a) 0 Hz (b) 5 Hz (c) 10 Hz (d) 15 Hz
Fig.6  TEM image (a) and electron diffraction pattern (b) of the in-situ nanoparticles prepared with the assistance of 10 Hz electromagnetic field
Fig.7  HRTEM image of the interface between the particle and matrix (a) and FFT spectra of I area (b) and II area (c) in Fig.7a
Fig.8  Low (a, c) and high (b, d) magnified morphologies and distributions of dislocations in in-situ ZrB2 np/AA6111 composite without electromagnetic field (a, b) and with the electromagnetic field of 10 Hz (c, d)
Fig.9  Stress-strain curves (a) and trend line chart (b) of tensile properties of the in-situ ZrB2 np/AA6111 composites prepared with different electromagnetic frequencies
Fig.10  SEM images of fracture surfaces of the in-situ ZrB2 np/AA6111 composite prepared with different electromagnetic frequencies
(a) 0 Hz (b) 5 Hz (c) 10 Hz (d) 15 Hz
Fig.11  Schematics of kinetic process of in-situ ZrB2 particles
(a) uncreated emulsified salt and Al melt
(b) in-situ reaction starting and Al3Zr and AlB2 generating
(c) ZrB2 generating and growing around theemulsified salt
(d) ZrB2 cluster obtaining
Fig.12  Schematic of forced convection in the melt under electromagnetic field
[1] Engler O, Sch?fer C, Brinkman H J.Crystal-plasticity simulation of the correlation of microtexture and roping in AA6xxx Al-Mg-Si sheet alloys for automotive applications[J]. Acta Mater., 2012, 60: 5217
[2] Kusters S, Seefeldt M, Van Houtte P.A fourier image analysis technique to quantify the banding behavior of surface texture components in AA6xxx aluminum sheet[J]. Mater. Sci. Eng. 2010, A527: 6239
[3] Li X, Tang J G, Zhang X M, et al.Effect of warm deformation on natural ageing and mechanical property of aluminum alloy 6061 sheets for automotive body[J]. Chin. J. Nonferrous Met., 2016, 26: 1(李翔, 唐建国, 张新明等. 温变形对汽车车身用6061铝合金自然时效及力学性能的影响[J]. 中国有色金属学报, 2016, 26: 1)
[4] Tamura S, Sumikawa S, Uemori T, et al.Experimental observation of elasto-plasticity behavior of type 5000 and 6000 aluminum alloy sheets[J]. Mater. Trans., 2011, 52: 255
[5] Macwan A, Kumar A, Chen D L.Ultrasonic spot welded 6111-T4 aluminum alloy to galvanized high-strength low-alloy steel: Microstructure and mechanical properties[J]. Mater. Des., 2017, 113: 284
[6] Karthik G M, Ram G D J, Kottada R S. Friction deposition of titanium particle reinforced aluminum matrix composites[J]. Mater. Sci. Eng., 2016, A653: 71
[7] Ramesh C S, Pramod S, Keshavamurthy R.A study on microstructure and mechanical properties of Al6061-TiB2 in-situ composites[J]. Mater. Sci. Eng., 2011, A528: 4125
[8] Lee I S, Hsu C J, Chen C F, et al.Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing[J]. Compos. Sci. Technol., 2011, 71: 693
[9] Zhang Q, Wang Q Z, Xiao B L, et al.Phases and elemental distributions in SiCp/Al-Cu-Mg composite fabricated by powder metallurgy[J]. Acta Metall. Sin., 2012, 48: 135(张琪, 王全兆, 肖伯律等. 粉末冶金制备SiCP/2009Al复合材料的相组成和元素分布[J]. 金属学报, 2012, 48: 135)
[10] Zhou L, Wang C Z, Zhang X X, et al.Finite element simulation of hot rolling process for SiCp/Al composite[J]. Acta Metall. Sin., 2015, 51: 889(周丽, 王唱舟, 张星星等. SiCp/Al复合材料热轧过程的有限元模拟[J]. 金属学报, 2015, 51: 889)
[11] Yu Z Q, Lin Z Q, Zhao Y X.Evaluation of fracture limit in automotive aluminium alloy sheet forming[J]. Mater. Des., 2007, 28: 203
[12] Yang Y, Lan J, Li X C.Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy[J]. Mater. Sci. Eng., 2004, A380: 378
[13] Su H, Gao W L, Feng Z H, et al.Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites[J]. Mater. Des., 2012, 36: 590
[14] Tian K L, Zhao Y T, Jiao L, et al.Effects of in situ generated ZrB2 nano-particles on microstructure and tensile properties of 2024Al matrix composites[J]. J. Alloys Compd., 2014, 594: 1
[15] Yang R, Zhang Z Y, Zhao Y T, et al.Microstructure-property analysis of ZrB2/6061Al hierarchical nanocomposites fabricated by direct melt reaction[J]. Mater. Charact., 2016, 112: 51
[16] Tjong S C, Chen F.Wear behavior of as-cast ZnAl27/SiC particulate metal-matrix composites under lubricated sliding condition[J]. Metall. Mater. Trans., 1997, 28A: 1951
[17] Tsumekawa Y, Suzuki H, Okumiya M.Preparation of in-situ reinforced composites using ultrasonic vibration and selective incorporation of reinforcements by magneticfield[J]. Alum. Trans., 2000, 2: 1
[18] Agrawal S, Ghose A K, Chakrabarty I.Effect of rotary electromagnetic stirring during solidification of in-situ Al-TiB2 composites[J]. Mater. Des., 2016, 113: 195
[19] Garcia-Hinojosa J A, Gonzalez-Rivera C, Juárez I J A, et al. Effect of grain refinement treatment on the microstructure of cast Al-7Si-SiCp composites[J]. Mater. Sci. Eng., 2004, A386: 54
[20] Lu L, Lai M O, Chen F L.In situ preparation of TiB2 reinforced Al base composite[J]. Adv. Compos. Mater, 1997, 6: 299
[21] Yu J B, Ren Z M, Ren W L, et al.Solidification structure of eutectic Al-Si alloy under a high magnetic field-aid-electromagnetic vibration[J]. Acta Metall. Sin.(Engl. Lett.), 2009, 22: 191
[22] Arsenault R J, Shi N.Dislocation generation due to differences between the coefficients of thermal expansion[J]. Mater. Sci. Eng., 1986, 81: 175
[23] Lo S H J, Dionne S, Sahoo M, et al. Mechanical and tribological properties of zinc-aluminium metal-matrix composites[J]. J. Mater. Sci., 1992, 27: 5681
[24] Li J X, Wang L Q, Qin J N, et al.Effect of microstructure on high temperature properties of in situ synthesized (TiB+La2O3)/Ti composite[J]. Mater. Charact., 2012, 66: 93
[25] Park J G, Keum D H, Lee Y H.Strengthening mechanisms in carbon nanotube-reinforced aluminum composites[J]. Carbon, 2015, 95: 690
[26] Hsu C J, Chang C Y, Kao P W, et al.Al-Al3Ti nanocomposites produced in situ by friction stir processing[J]. Acta Mater., 2006, 54: 5241
[27] Sajjadi S A, Ezatpour H R, Beygi H.Microstructure and mechanical properties of Al-Al2O3 micro and nano composites fabricated by stir casting[J]. Mater. Sci. Eng., 2011, A528: 8765
[28] Kim W J, Hong S I, Lee J M, et al.Dispersion of TiC particles in an in situ aluminum matrix composite by shear plastic flow during high-ratio differential speed rolling[J]. Mater. Sci. Eng., 2013, A559: 325
[29] Gokhale A M, Deshpande N U, Denzer D K, et al.Relationship between fracture toughness, fracutre path, and microstructure of 7050 aluminum alloy: Part II. Multiple micromechanisms-based fracture toughness model[J]. Metall. Mater. Trans., 1998, 29A: 1203
[30] Srivatsan T S.Cyclic strain resistance and fracture behaviour of Al2O3-particulate-reinforced 2014 aluminium alloy metal-matrix composites[J]. Int. J. Fatigue, 1995, 17: 183
[31] Chen F, Mao F, Chen Z N, et al.Application of synchrotron radiation X-ray computed tomography to investigate the agglomerating behavior of TiB2 particles in aluminum[J]. J. Alloys Compd., 2015, 622: 831
[32] Jiao L, Zhao Y, Wu Y, et al.Microstructures of in-situ TiB2/7055Al composites by the ultrasonic and magnetic coupled field[J]. Rare Met. Mater. Eng., 2014, 43: 6
[33] Chen D B, Zhao Y T, Li G R, et al.Mechanism and kinetic model of in-situ TiB2/7055Al nanocomposites synthesized under high intensity ultrasonic field[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2011, 26: 920
[34] Vives C, Perry C.Effects of electromagnetic stirring during the controlled solidification of tin[J]. Int. J. Heat Mass Transfer, 1986, 29: 21
[1] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[2] ZHANG Lin, GUO Xiao, GAO Jianwen, DENG Anyuan, WANG Engang. Effect of Electromagnetic Stirring on Microstructure and Mechanical Properties of TiB2 Particle-Reinforced Steel[J]. 金属学报, 2020, 56(9): 1239-1246.
[3] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[4] Hanchen FENG,Xuegang MIN,Dasheng WEI,Lichu ZHOU,Shiyun CUI,Feng FANG. Effect of Low Temperature Annealing on Microstructure and Mechanical Properties of Ultra-Heavy Cold-DrawnPearlitic Steel Wires[J]. 金属学报, 2019, 55(5): 585-592.
[5] Yongyong GONG, Shumin CHENG, Yuyi ZHONG, Yunhu ZHANG, Qijie ZHAI. The Solidification Technology of Pulsed Magneto Oscillation[J]. 金属学报, 2018, 54(5): 757-765.
[6] Peibei JI, Lichu ZHOU, Xuefeng ZHOU, Feng FANG, Jianqing JIANG. Study on Anisotropic Mechanical Properties of Cold Drawn Pearlitic Steel Wire[J]. 金属学报, 2018, 54(4): 494-500.
[7] Qiang WANG, Ming HE, Xiaowei ZHU, Xianliang LI, Chunlei WU, Shulin DONG, Tie LIU. Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes[J]. 金属学报, 2018, 54(2): 228-246.
[8] Fei WANG,Engang WANG,Peng JIA,Tao WANG,Anyuan DENG. Effect of Electromagnetic Continuous Casting on TiN Distribution and Internal Crack of Incoloy800H Alloy Billet[J]. 金属学报, 2017, 53(1): 97-106.
[9] Linna BAI,Fuping LIU,Sui WANG,Feng JIANG,Jun SUN,Liangbin CHEN,WANG,Fengyuan. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Fe-C-Cu POWDER-FORGED CONNECTING ROD[J]. 金属学报, 2016, 52(1): 41-50.
[10] Cheng BI, Zhipeng GUO, E LIOTTI, Shoumei XIONG, P S GRANT. QUANTIFICATION STUDY ON DENDRITE FRAGMENTATION IN SOLIDIFICATION PROCESS OF ALLUMINUM ALLOYS[J]. 金属学报, 2015, 51(6): 677-684.
[11] Xiaolin LI, Zhaodong WANG. EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL[J]. 金属学报, 2015, 51(5): 537-544.
[12] Shude JI,Quan WEN,Lin MA,Jizhong LI,Li ZHANG. MICROSTRUCTURE ALONG THICKNESS DIRECTION OF FRICTION STIR WELDED TC4 TITANIUM ALLOY JOINT[J]. 金属学报, 2015, 51(11): 1391-1399.
[13] GAO Zhongtang, HU Rui, WANG Jun, YANG Jieren, LI Jinshan. EFFECT OF ELECTROMAGNETIC MELT TREATMENT NEAR LIQUIDUS ON THE FORMATION OF NON-DENDRITE MICROSTRUCTURE OF SUPERALLOY[J]. 金属学报, 2014, 50(12): 1471-1477.
[14] AN Tong, QIN Fei, WANG Xiaoliang. MICROSTRUCTURE EVOLUTION AND MECHANICAL BEHAVIOR OF INTERMETALLIC COMPOUNDS IN SOLDER JOINT[J]. 金属学报, 2013, 49(9): 1137-1142.
[15] YAN Shu, LIU Xianghua, LIU WJ, LAN Huifang, WU Hongyan. MICROSTRUCTURE, MECHANICAL PROPERTIES AND STRENGTHENING MECHANISMS OF A Cu BEARING LOW-CARBON STEEL TREATED BY Q&P PROCESS[J]. 金属学报, 2013, 49(8): 917-924.
No Suggested Reading articles found!