Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (12): 1567-1572    DOI: 10.3724/SP.J.1037.2013.00141
Current Issue | Archive | Adv Search |
SOLIDIFICATION BEHAVIOR OF A Pt—CONTAININ Ni—BASED SINGLE CRYSTAL SUPERALLOY
LIN Huiwen, ZHOU Yizhou, ZHANG Xuan, JIN Tao, SUN Xiaofeng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LIN Huiwen, ZHOU Yizhou, ZHANG Xuan, JIN Tao, SUN Xiaofeng. SOLIDIFICATION BEHAVIOR OF A Pt—CONTAININ Ni—BASED SINGLE CRYSTAL SUPERALLOY. Acta Metall Sin, 2013, 49(12): 1567-1572.

Download:  PDF(1895KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Ni—based single crystal superalloy is the primary material for the manufacture of blades of the advanced areoengine and gas turbine. As the alloying design theory improved, the concentration of refractory elements increased and some new elements were introduced. Among these refractory elements, Ru became a fresh and sign element which was introduced into the fourth generation Ni—based single crystal superalloy. A large amount of research had indicated that Ru, as a member of Platinum group metals (PGMs), had played a significant role on the enhancement of phase stability and rupture life for Ni—based single crystal superalloy. Inspired by these works, other PGMs like Pt have been suggested to be the major alloying elements of the next generation advanced Ni—based single crystal superalloy. But the research for the effects of Pt addition on solidification behavior or creep property of the single crystal superalloy is rare. To explore the possibility of Pt using as a major alloying element, the present work investigated the influence of Pt on the solidification behavior of the Ni—based single crystal superalloy. Directional solidification method was used to grow the single crystal. DTA and EPMA were used to determine the effect of Pt on the phase transition temperatures and composition variety, respectively. In addition, OM and SEM were used to show the phases morphology. Some results are described as follow. Firstly, it has been found that the addition of Pt changes the eutectic morphology and increases eutectic fraction. Grid—like eutectic increases with the addition of Pt. Secondly, Pt promotes not only the segregation of refractory elements but also the eutectic—forming element Al. In addition, Pt prefers to segregate to the interdendritic region and is able to form an ordered Pt3Al phase with Al which may be a reason for the increase of eutectic fraction. But Pt reduces the segregation of Mo element whose content is a sensitive factor for the formation of the topological close—packed (TCP) phase. Thirdly, Pt decreases initial melting temperature and enhancesγ′phase precipitation temperature; thereby reduces the solution heat treatment window  of the alloys. The solution heat treatment of the alloys therefore becomes more difficult. Since the element segregation is hard to be eliminated by heat treatment in the Pt—containing alloys, Pt addition may be harmful for the mechanical properties of single crystal superalloy. The effects of Ru addition on the solidification behavior of the Ni—based single crystal superalloy will be also discussed for comparison.

Key words:  Pt      Ni—based single crystal superalloy      solidification behavior     
Received:  27 March 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00141     OR     https://www.ams.org.cn/EN/Y2013/V49/I12/1567

[1] Mughrabi H, Tetzlaff U.  Adv Eng Mater, 2000; 2: 319
[2] Wang J, Zhou L Z, Sheng L Y, Guo J T.  Mater Des, 2012; 39: 55
[3] Acharya M V, Fuchs G E.   Mater Sci Eng, 2004; A381: 143
[4] Ma W Y, Han Y F, Li S S, Zheng Y R, Gong S K.  Acta Metall Sin, 2006; 42: 1191
(马文友, 韩雅芳, 李树索, 郑运荣, 宫声凯. 金属学报, 2006; 42: 1191
[5] Kearsey R M, Beddoes J C, Jaansalu K M, Thompson W T, Au P.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds.,Superalloys 2004, Warrendale: TMS, 2004: 801
[6] Reed R C.  Superalloys: Fundamentals and Applications.Cambride: Cambridge University Press, 2006: 147
[7] Cetel A D, Duhl D N. In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L,Khan T, Kissinger R D, Klarstrom D L eds.,  Superalloys 1992, Warrendale: TMS, 1992: 287
[8] Erickson G L. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V,Pollock T M, Woodford D A eds.,  Superalloys 1996, Warrendale: TMS, 1996: 35
[9] Walston W S, O'Hara K S, Ross E W, Pollock T M, Murphy W H.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds.,Superalloys 1996, Warrendale: TMS, 1996: 27
[10] Rae C M F, Karunaratne M S A, Small C J, Broomfield R W, Jones C N, Reed R C.In: Pollock T M, Kissinger R D, Bowman R R, Green K A, Mclean M, Olson S L, Schirra J J eds.,Superalloys 2000, Warrendale: TMS, 2000: 767
[11] O'hara K S, Walston W S, Ross E W, Darolia R.   US Pat, 5482789, 1996
[12] Ofori A P, Rossouw C J, Humphreys C J.   Acta Mater, 2005; 53: 97
[13] Heckl A, Neumeier S, Cenanovic S, Goken M, Singer R F.   Acta Mater, 2011; 59: 6563
[14] Sato A, Harada H, Yokokawa T, Murakumo T, Koizumi Y, Kobayashi T, Imai H.Scr Mater, 2006; 54: 1679[15] Tin S, Yeh A C, Ofori A P, Reed R C, Babu S S, Miller M K. In: Green K A,Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds.,Superalloys 2004, Warrendale: TMS, 2004: 735
[16] Van Sluytman J S, La Fontaine A, Cairney J M, Pollock T M.   Acta Mater, 2010; 58: 1952
[17] Yokokawa T, Osawa M, Nishida K, Kobayashi T, Koizumi Y, Harada H.  Scr Mater, 2003; 49: 1041
[18] Ofori A P, Humphreys C J, Tin S, Jones C N. In: Green K A, Pollock T M,Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds.,Superalloys 2004,  Warrendale: TMS, 2004: 787
[19] Murakami H, Koizumi Y, Yokokawa T, Yamabe M Y, Yamagata T, Harada H. Mater Sci Eng, 1998; A250: 109
[20] Van Sluytman J S, Suzuki A, Bolcavage A, Helmink R C, Ballard D L,Pollock T M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S eds., Superalloys 2008, Warrendale: TMS, 2008: 499
[21] Heidloff A J, Van Sluytman J S, Pollock T M, Gleeson B.   Metall Mater Trans,2009; 40A: 1529
[22] Zheng L, Gu C Q, Zheng Y R.   Chin J Nonferrous Met, 2002; 12: 1199
(郑亮, 谷臣清, 郑运荣. 中国有色金属学报, 2002; 12: 1199)
[23] Liu G, Liu L, Zhang S X, Yang C B, Zhang J, Fu H Z.   Acta Metall Sin, 2012; 48: 845
(刘刚, 刘林, 张胜霞, 杨初斌, 张军, 傅恒志. 金属学报, 2012; 48: 845)
[24] Heckl A, Rettig R, Singer R F.  Metall Mater Trans, 2009; 41A: 202
[25] Karunaratne M S A, Rae C M F, Reed R C. Metall Mater Trans, 2001; 32A: 2409
[26] Karunaratne M S A, Cox D C, Carter P, Reed R C. In: Reed R C, Green K A,Caron P, Gabb T P, Fahrmann M G, Huron E S eds.,   Superalloys 2000,Warrendale: TMS, 2000: 263

[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[4] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[5] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[6] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[7] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[8] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[9] WANG Di, WANG Dong, XIE Guang, WANG Li, DONG Jiasheng, CHEN Lijia. Influence of Pt-Al Coating on Hot Corrosion Resistance Behaviors of a Ni-Based Single-Crystal Superalloy[J]. 金属学报, 2021, 57(6): 780-790.
[10] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[11] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[12] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[13] SUN Xiaofeng, SONG Wei, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Research and Development in Materials and Processes of Superalloy Fabricated by Laser Additive Manufacturing[J]. 金属学报, 2021, 57(11): 1471-1483.
[14] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[15] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
No Suggested Reading articles found!