Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (12): 1581-1589    DOI: 10.3724/SP.J.1037.2013.00406
Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF DD5 SINGLE CRYSTAL SUPERALLOY JOINT BRAZED BY Co—BASED FILLER ALLOY
SUN Yuan1), LIU Jide1), LIU Zhongming2), YANG Jinxia1), LI Jinguo1),JIN Tao1), SUN Xiaofeng1)
1) Department of Superalloy, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Aviation Industry Corporation of China (AVIC) Shenyang Liming Aero—engine (Group) Corporation LTD.,Shenyang 110043
Cite this article: 

SUN Yuan, LIU Jide, LIU Zhongming, YANG Jinxia, LI Jinguo,JIN Tao, SUN Xiaofeng. MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF DD5 SINGLE CRYSTAL SUPERALLOY JOINT BRAZED BY Co—BASED FILLER ALLOY. Acta Metall Sin, 2013, 49(12): 1581-1589.

Download:  PDF(5874KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The single crystal supperalloy DD5 was brazed using Co—Ni—Si—B filler alloy at  1453 K. The microstructure of joint and effect of brazing time on the microstructure and mechanical properties were investigated by SEM, EPMA and TEM. The formation mechanism of joint was discussed deeply. The result indicates that three distinct regions can be identified in a joint: the filler alloy zone, interfacial bonding zone, element diffusion zone. The filler alloy zone in the center of joint consists of Ni—Co solid solution, M3B2—type boride, CrB and Ni—Si compounds. The interfacial bonding zone adjacent to the filler alloy zone is composed of Ni—Co solid solution formed isothermally at brazing temperature. The element diffusion zone between the interfacial bonding zone and substrate consists of γ phase, γ′ phase and granular M3B2 phase which was formed in element diffusion. With extending brazing time, the brazing defects reduce, the thickness of bonding layer and the size of spherical Ni—Co solid solution in the filler alloy zone increase, and the brittle compounds reduce. The tensile strength at 1143 K increases from 198.5 MPa to 580 MPa. The investigation on fracture of high temperature tensile specimens exhibits that the fracture occurred in the seam and the fractural model is a mixed fracture. Through extending brazing time the bonding strength between seam and substrate can be improved, the brittle compounds can be controlled and the mechanical properties of joint are improved. The analysis results of microstructure and properties also imply that the optimum holding time would be 180 min.

Key words:  Brazing      single crystal superalloy      Co—based filler alloy      microstructure      mechanical properties     
Received:  12 July 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00406     OR     https://www.ams.org.cn/EN/Y2013/V49/I12/1581

[1] Guo J T.  Material Science and Engineering for Superalloys, Preparation Technology.Beijing: Science Press, 2008: 452

(郭建亭. 高温合金材料学, 制备工艺. 北京: 科学出版社, 2008: 452)
[2] Zhang X L, Zhou Y Z, Jin T, Sun X F.  Acta Metall Sin, 2012; 48: 1229
(张小丽, 周亦胄, 金涛, 孙晓峰. 金属学报, 2012; 48: 1229)
[3] Tung S K, Lim L C, Lai M O.  Scr Mater, 1996; 34: 763
[4] Guo L J, Li H J, Guo C, Li K Z, Feng T.  Rare Met Mater Eng, 2011; 40: 2088
[5] Pouranvari M, Ekrami A, Kokabi A H.  J Alloys Compd, 2008; 461: 641
[6] Liu W P, Zhuang H S.  Acta Metall Sin, 1995; 31: 539
(刘伟平, 庄鸿寿. 金属学报, 1995; 31: 539)
[7] Wu N, Li Y J, Wang J, Puchkov U A.  J Mater Process Tech, 2012; 212: 794
[8] Chen B, Xiong H P, Mao W, Cheng Y Y, Li X H.  Acta Metall Sin, 2008; 44: 1260
(陈波, 熊华平, 毛唯, 程耀永, 李晓红. 金属学报, 2008; 44: 1260)
[9] Wu X W, Chandel R S, Lia H, Seowa H P, Wu S C.  J Mater Process Tech, 2000; 104: 34
[10] Cao J, Song X G, Zheng Z J, Feng J C.  Trans China Weld Inst, 2011; 32(7): 13
(曹健, 宋晓国, 郑祖金, 冯吉才. 焊接学报, 2011; 32(7): 13)
[11] MacDonald W D, Eagar T W.  Annu Rev Mater Sci, 1992; 22: 23
[12] Li X H, Mao W, Guo W L, Xie Y H.  Trans China Weld Inst, 2005, 26(4): 51
(李晓红, 毛唯, 郭万林, 谢永慧. 焊接学报, 2005, 26(4): 51)
[13] Li W, Jin T, Sun X F, Guan H R, Hu Z Q.  Acta Metall Sin, 2001; 37: 1166
(李文, 金涛, 孙晓峰, 管恒荣, 胡壮麒. 金属学报, 2001; 37: 1166)
[14] Li W, Jin T, Sun X F, Guo Y, Guan H R, Hu Z Q.  Scr Mater, 2003; 48: 1283
[15] Liu J D, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q.  Mater Charact, 2011; 62: 545
[16] Liu J D.  PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007
(刘纪德. 中国科学院金属研究所博士学位论文, 沈阳, 2007)
[17] Zhou Y, Mao W, Li X H.  J Mater Eng, 2007; (5): 3
(周媛, 毛唯, 李晓红. 材料工程, 2007; (5): 3)
[18] Neumeier S, Dinkel M, Pyczak F, Goken M.  Mater Sci Eng, 2011; A528: 815
[19] Rabinkin A.  Sci Tech Weld Join, 2004; 9: 181
[20] Ou C L, Liaw D W, Du Y C, Shiue R K.  J Mater Sci, 2006; 41: 6353
[21] Tatsuya T, Kazumasa N, Hiroshi O, Mitsuhiro H.  Calphad, 2003; 27: 161
[22] Datta M K, Pabi S K, Murty B S.  Mater Sci Eng, 2000; A284: 219
[1] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!