Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 329-336    DOI: 10.3724/SP.J.1037.2013.00444
Current Issue | Archive | Adv Search |
THERMAL STABILIZATION TREATMENT AND THE EFFECT ON THE MICROSTRUCTURE IN DIRECTIONALLY SOLIDIFIED Ti-52%Al ALLOY
LIU Guohuai, ZHANG Yuan, LI Xinzhong(), CHEN Ruirun, SU Yanqing, GUO Jingjie, FU Hengzhi
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
Download:  HTML  PDF(12007KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

以Ti-52%Al合金为研究对象, 在Bridgman定向凝固炉中进行不同时间的热稳定处理实验及相关的定向凝固实验, 研究了定向凝固前糊状区的形成及其微观组织演化、界面形态和溶质分布, 并考察了热稳定处理对定向凝固组织的影响. 结果表明, 试样熔化后形成了由α相晶粒、晶粒间富Al液滴和液相通道组成的糊状区, 糊状区前沿为完全液相区. 随着热稳定处理时间的增加, 糊状区内α晶粒逐渐融合且沿温度梯度方向定向排布, 富Al液滴和液相通道逐渐消失, 固/液界面变得光滑平整. 热稳定处理时间足够长时, 糊状区内为单一的α相, 溶质Al的成分在生长方向近似沿着α固相线变化. 根据溶质守恒计算得出完全液相区内溶质Al含量为52.21%, 高于试样原始成分, 与实验测量结果相一致. 进一步研究热稳定处理对后续定向凝固组织的影响, 发现合理的热稳定处理时间(≥30 min)确保了定向凝固启动界面处存在稳定的温度场和浓度场, 柱状晶沿生长方向能够平行并列生长, 试样具有良好的定向效果.

Key words:  TiAl alloy      thermal stable treatment      directional solidification      microstructure     
Received:  25 July 2013     
ZTFLH:  TG249.9  
Fund: Supported by National Natural Science Foundation of China (Nos.51071062, 51274077 and 51271068), National Basic Research Program of China (No.2011CB605504), Open Project of State Key Lab of Mold and Die Technology of Huazhong University of Science and Technology (No.2011-P03) and Fundamental Research Funds for the Central Universities (No.HIT.NSRIF.2013002).

Cite this article: 

LIU Guohuai, ZHANG Yuan, LI Xinzhong, CHEN Ruirun, SU Yanqing, GUO Jingjie, FU Hengzhi. THERMAL STABILIZATION TREATMENT AND THE EFFECT ON THE MICROSTRUCTURE IN DIRECTIONALLY SOLIDIFIED Ti-52%Al ALLOY. Acta Metall Sin, 2014, 50(3): 329-336.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00444     OR     https://www.ams.org.cn/EN/Y2014/V50/I3/329

Fig.1  

纵向温度梯度作用下糊状区形成的示意图

Fig.2  

Ti-52%Al合金不同热稳定处理后糊状区的宏观组织

Fig.3  

不同热稳定处理时糊状区与完全液相区的成分分布

Fig.4  

Ti-52%Al合金稳态时糊状区与完全液相区组织和成分分布图

Fig.5  

简化的TiAl合金部分相图

[1] Mullins C W, Sekerka R F. Appl Phys, 1964; 35: 444
[2] Geng X G, Cheng G, Fu H Z. Acta Metall Sin, 2002; 38: 225
(耿兴国, 陈 光, 傅恒志. 金属学报, 2002; 38: 225)
[3] Bosenberg U, Buchmann M, Rettenmayr M. J Cryst Growth, 2007; 304: 281
[4] Thi H N, Drevet B, Debierre J M. J Cryst Growth, 2003; 253: 539
[5] Buchmann M, Rettenmayr M. J Cryst Growth, 2005; 284: 544
[6] Su Y Q, Liu D M, Li X Z, Luo L S, Guo J J, Fu H Z. J Cryst Growth, 2010; 312: 2441
[7] Umeda T, Okane T, Kurz W. Acta Mater, 1996; 44: 4209
[8] Trivedi R, Park J S. J Cryst Growth, 2002; 235: 572
[9] Lo T S, Dobler S, Plapp M, Karma A, Kurz W. Acta Mater, 2003; 51: 599
[10] Asta M, Beckman C, Karma A. Acta Mater, 2009; 57: 941
[11] Liu G H, Li X Z, Su Y Q, Liu D M, Guo J J, Fu H Z. J Alloys Compd, 2012; 541: 275
[12] Allen D J, Hunt J D. Metall Trans, 1976; 7A: 767
[13] Liu D M, Su Y Q, Li X Z, Luo L S, Guo J J, Fu H Z. J Cryst Growth, 2010; 312: 3658
[14] Liu C. PhD Dissertation, Harbin Institute of Technology, 2006
(刘 畅. 哈尔滨工业大学博士学位论文, 2006)
[15] Luo W Z, Shen J, Li Q L, Man W W, Fu H Z. Acta Metall Sin, 2007; 43: 897
(罗文忠, 沈 军, 李庆林, 满伟伟, 傅恒志. 金属学报, 2007; 43: 897)
[1] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[2] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[3] LIN Zhangqian, ZHENG Wei, LI Hao, WANG Dongjun. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering[J]. 金属学报, 2021, 57(1): 111-120.
[4] ZHENG Qiuju, YE Zhongfei, JIANG Hongxiang, LU Ming, ZHANG Lili, ZHAO Jiuzhou. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys[J]. 金属学报, 2021, 57(1): 103-110.
[5] TONG Wenhui, ZHANG Xinyuan, LI Weixuan, LIU Yukun, LI Yan, GUO Xuming. Effect of Laser Process Parameters on the Microstructure and Properties of TiC Reinforced Co-Based Alloy Laser Cladding Layer[J]. 金属学报, 2020, 56(9): 1265-1274.
[6] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[7] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
[8] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
[9] ZHANG Maolong, LU Yanhong, CHEN Shenghu, RONG Lijian, LU Hao. Effect of Dilution Ratio of the First 309L Cladding Layer on the Microstructure and Mechanical Properties of Weld Joint of Connecting Pipe-Nozzle to Safe-End in Nuclear Power Plant[J]. 金属学报, 2020, 56(8): 1057-1066.
[10] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[11] REN Dechun, ZHANG Huibo, ZHAO Xiaodong, WANG Fuyu, HOU Wentao, WANG Shaogang, LI Shujun, JIN Wei, YANG Rui. Influence of Manufacturing Parameters on the Properties of Electron Beam Melted Ti-Ni Alloy[J]. 金属学报, 2020, 56(8): 1103-1112.
[12] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[13] XIANG Xuemei, JIANG He, DONG Jianxin, YAO Zhihao. As-Cast Microstructure Characteristic and Homogenization of a Newly Developed Hard-Deformed Ni-Based Superalloy GH4975[J]. 金属学报, 2020, 56(7): 988-996.
[14] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[15] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
No Suggested Reading articles found!