Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 41-48    DOI: 10.3724/SP.J.1037.2013.00352
Original Articles Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg-4Zn-2Al-2Sn ALLOYS EXTRUDED AT LOW TEMPERATURES
ZHAO Dongqing 1, 2), ZHOU Jixue 2), LIU Yunteng 2), DONG Xuguang 1), WANG Jing 1), YANG Yuansheng 1, 2)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Institute of New Materials Research, Shandong Academy of Sciences, Jinan 250014
Download:  HTML  PDF(11253KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Due to the high demand of light-weight alloys in automotive applications, wrought magnesium (Mg) alloys, applied as automotive sheet and extrusions, are attracting great attention. However, some inherent disadvantages of common wrought Mg alloys have limited their application, such as poor corrosion resistance, poor creep resistance and low formability. It is well known that Sn can provide thermally stable Mg2Sn particles in the matrix of magnesium alloys. Our previous study shows that the Mg-4Zn-2Al-2Sn alloy has potential to be developed into a wrought Mg alloy. Currently, the microstructure, texture and mechanical properties of Mg-4Zn-2Al-2Sn alloy extruded at temperatures of 225, 250 and 275 ℃ have been investigated, where complete dynamic recrystallization occurred during extrusion and the average grain size was reduced to 4.4, 7.1 and 10.5 μm, respectively. The amount and morphology of the second phases were directly influenced by the extrusion temperature. Extruded at 225 ℃, irregular Mg2Sn phase in size of 20~60 nm precipitated in the grains. With the extrusion temperature increasing to 275 ℃, Mg2Sn of about 500 nm and micron-size Mg32(Al, Zn)49 precipitates were observed. The {0002} texture was formed at 225 and 250 ℃ during the extrusion. While the temperature increased to 275 ℃, due to the activation of prismatic slip system, {1010}<0002> texture of prismatic plane parallel to extrusion direction was also observed. When compressive stress loaded along the extrusion direction, the {1010}<0002> texture suppressed the activation of the tensile twinning {1012}<1011>, which leads to a decrease of asymmetry between tension and compression.
Key words:  magnesium alloy      extrusion at low temperature      microstructure      mechanical property     
Received:  25 June 2013     
ZTFLH:  TG146.2  
Corresponding Authors:  YANG Yuansheng, professor, Tel: (024)23971728, E-mail:ysyang@imr.ac.cn   
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

ZHAO Dongqing,),ZHOU Jixue ),LIU Yunteng ),DONG Xuguang ),WANG Jing ),YANG Yuansheng,). MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg-4Zn-2Al-2Sn ALLOYS EXTRUDED AT LOW TEMPERATURES. Acta Metall Sin, 2014, 50(1): 41-48.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00352     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/41

[1] Kashefi N, Mahmudi R. Mater Des, 2012; 39: 200
[2] Song D H, Lee S W, Park Y D, Park Y H, Cho K M, Park I M. Mater Sci Forum, 2007; 539-543: 1790
[3] Chen Z H, Yan H G, Chen J H, Quan Y J, Wang H M, Chen D. Magnesium Alloys. Beijing: Chemical Industry Press, 2004: 202
(陈振华, 严红革, 陈吉华, 全亚杰, 王慧敏, 陈 鼎. 镁合金. 北京: 化学工业出版社, 2004: 202)
[4] Sasaki T T, Yamamoto K, Honma T, Kamado S, Hono K. Scr Mater, 2008; 59: 1111
[5] Liu C M, Zhu X R, Zhou H T. Magnesium Alloy Phase Diagrams. Nanjing: Southeast University Press, 2006: 49
(刘楚明, 朱秀荣, 周海涛. 镁合金相图集. 南京: 东南大学出版社, 2006: 49)
[6] Bronfin B, Aghion E, Buch F V, Schumann S, Katzir M. US Pat,7041179B2, 2006
[7] Dong X G, Fu J W, Yang Y S. Acta Metall Sin, 2013; 49: 621
(董旭光, 付俊伟, 杨院生. 金属学报, 2013; 49: 621)
[8] Lim H K, Kim D H, Lee J Y, Kim W T, Kim D H. J Alloys Compd, 2009; 468: 308
[9] Chen J H, Chen Z H, Yan H G, Zhang F Q, Kun L. J Alloys Compd, 2008; 461: 209
[10] Zhao D Q, Dong X G, Zhang X E, Gao A J, Zhou J X, Yang Y S. Mater Sci Forum, 2013; 747-748: 398
[11] Kang D H, Park S S, Kim N J. Mater Sci Eng, 2005; A413-414: 555
[12] Henes S, Gerold V. Z Metallk, 1962; 53: 743
[13] Rabkin E. Scr Mater, 1998; 39: 1631
[14] Li W B, Easterling K E. Acta Metall Mater, 1990; 38: 1045
[15] Mendis C L, Ohishi K, Kawamura Y, Honma T, Kamado S, Hono K. Acta Mater, 2009; 57: 749
[16] Park S S, You B S, Yoon D J. J Mater Process Technol, 2009; 209: 5940
[17] Shahzad M, Wagner L. Mater Sci Eng, 2009; A506: 141
[18] Yang P, Hu Y S, Cui F E. Chin J Mater Res, 2004; 18: 52
(杨 平, 胡轶嵩, 崔凤娥. 材料研究学报, 2004; 18: 52)
[19] Park S S, Tang W N, You B S. Mater Lett, 2010; 64: 31
[20] Wang Y N, Huang J C. Acta Mater, 2007; 55: 897
[21] Barnett M R. Scr Mater, 2008; 59: 696
[22] Stanford N, Barnett M R. Mater Sci Eng, 2009; A516: 226
[23] Jain J, Poole W J, Sinclair C W, Gharghouri M A. Scr Mater, 2010; 62: 301
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[4] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[5] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[6] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[7] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[8] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[9] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[10] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[11] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[12] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[13] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[14] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[15] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
No Suggested Reading articles found!