Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 41-48    DOI: 10.3724/SP.J.1037.2013.00352
Original Articles Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg-4Zn-2Al-2Sn ALLOYS EXTRUDED AT LOW TEMPERATURES
ZHAO Dongqing1,2, ZHOU Jixue2, LIU Yunteng2, DONG Xuguang1, WANG Jing1, YANG Yuansheng1,2()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Institute of New Materials Research, Shandong Academy of Sciences, Jinan 250014
Cite this article: 

ZHAO Dongqing, ZHOU Jixue, LIU Yunteng, DONG Xuguang, WANG Jing, YANG Yuansheng. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg-4Zn-2Al-2Sn ALLOYS EXTRUDED AT LOW TEMPERATURES. Acta Metall Sin, 2014, 50(1): 41-48.

Download:  HTML  PDF(11253KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to the high demand of light-weight alloys in automotive applications, wrought magnesium (Mg) alloys, applied as automotive sheet and extrusions, are attracting great attention. However, some inherent disadvantages of common wrought Mg alloys have limited their application, such as poor corrosion resistance, poor creep resistance and low formability. It is well known that Sn can provide thermally stable Mg2Sn particles in the matrix of magnesium alloys. Our previous study shows that the Mg-4Zn-2Al-2Sn alloy has potential to be developed into a wrought Mg alloy. Currently, the microstructure, texture and mechanical properties of Mg-4Zn-2Al-2Sn alloy extruded at temperatures of 225, 250 and 275 ℃ have been investigated, where complete dynamic recrystallization occurred during extrusion and the average grain size was reduced to 4.4, 7.1 and 10.5 μm, respectively. The amount and morphology of the second phases were directly influenced by the extrusion temperature. Extruded at 225 ℃, irregular Mg2Sn phase in size of 20~60 nm precipitated in the grains. With the extrusion temperature increasing to 275 ℃, Mg2Sn of about 500 nm and micron-size Mg32(Al, Zn)49 precipitates were observed. The {0002} texture was formed at 225 and 250 ℃ during the extrusion. While the temperature increased to 275 ℃, due to the activation of prismatic slip system, { 1 0 1 - 0 } < 0002 > texture of prismatic plane parallel to extrusion direction was also observed. When compressive stress loaded along the extrusion direction, the { 1 0 1 - 0 } < 0002 > texture suppressed the activation of the tensile twinning { 1 0 1 - 2 } < 1 0 1 - 1 > , which leads to a decrease of asymmetry between tension and compression.

Key words:  magnesium alloy      extrusion at low temperature      microstructure      mechanical property     
Received:  25 June 2013     
ZTFLH:  TG146.2  
Fund: Supported by National Key Technology R&D Program (No.2011BAE22B01-1), International Science &amp; Technology Cooperation Program of China (No.2011DFA50903) and Natural Science Foundation of Shandong Province (No.ZR2010EQ021)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00352     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/41

Fig.1  

均匀化处理后Mg-4Zn-2Al-2Sn合金金相组织及其XRD谱

Fig.2  

不同挤压温度下Mg-4Zn-2Al-2Sn合金挤压后的金相显微组织

Fig.3  

不同温度挤压Mg-4Zn-2Al-2Sn合金的XRD谱

Fig.4  

不同挤压温度下Mg-4Zn-2Al-2Sn合金的SEM和TEM像及相应的选区电子衍射谱

Area Mg Zn Al Sn
A 74.43 18.79 6.72 0.06
B 76.57 14.89 8.43 0.11
Table 1  EDS analyses of phases in Fig.4e(atomic fraction / %)
Fig.5  

不同挤压温度下合金横截面(0002)和 ( 1 0 1 - 0 ) 晶面极图

Extrusion temperature
Tensile property Compressive property
R

Yield strength
MPa
Ultimate strength
MPa
Elongation
%
Yield strength MPa Ultimate strength
MPa
Elongation
%
225 211.7 317.5 27.6 186.3 451.0 -17.6 0.88
250 176.7 296.3 24.0 158.6 442.0 -18.0 0.89
275 173.8 293.8 23.6 165.8 458.7 -16.5 0.95
表2  挤压Mg-4Zn-2Al-2Sn合金拉伸与压缩性能
Fig.6  

225和275 ℃挤压Mg-4Zn-2Al-2Sn合金样品拉伸和压缩应力-应变曲线

Fig.7  

挤压镁合金{0001} < 1 0 1 - 2 > 织构在受到沿挤压方向压应力示意图及有利于和不利于拉伸孪晶形成的应力加载方向

[1] Kashefi N, Mahmudi R.Mater Des, 2012; 39: 200
[2] Song D H, Lee S W, Park Y D, Park Y H, Cho K M, Park I M. Mater Sci Forum, 2007; 539-543: 1790
[3] Chen Z H,Yan H G,Chen J H,Quan Y J,Wang H M,Chen D. Magnesium Alloys. Beijing: Chemical Industry Press, 2004: 202
(陈振华,严红革,陈吉华,全亚杰,王慧敏,陈 鼎. 镁合金. 北京: 化学工业出版社, 2004: 202)
[4] Sasaki T T, Yamamoto K, Honma T, Kamado S, Hono K. Scr Mater, 2008; 59: 1111
[5] Liu C M,Zhu X R,Zhou H T. Magnesium Alloy Phase Diagrams. Nanjing: Southeast University Press, 2006: 49
(刘楚明,朱秀荣,周海涛. 镁合金相图集. 南京: 东南大学出版社, 2006: 49)
[6] Bronfin B, Aghion E, Buch F V, Schumann S, Katzir M. US Pat,7041179B2, 2006
[7] Dong X G, Fu J W, Yang Y S. Acta Metall Sin, 2013; 49: 621
(董旭光, 付俊伟, 杨院生. 金属学报, 2013; 49: 621)
[8] Lim H K, Kim D H, Lee J Y, Kim W T, Kim D H.J Alloys Compd, 2009; 468: 308
[9] Chen J H, Chen Z H, Yan H G, Zhang F Q, Kun L.J Alloys Compd, 2008; 461: 209
[10] Zhao D Q, Dong X G, Zhang X E, Gao A J, Zhou J X, Yang Y S. Mater Sci Forum, 2013; 747-748: 398
[11] Kang D H, Park S S, Kim N J. Mater Sci Eng, 2005; A413-414: 555
[12] Henes S, Gerold V. ZMetallk, 1962; 53: 743
[13] Rabkin E.Scr Mater, 1998; 39: 1631
[14] Li W B, Easterling K E.Acta Metall Mater, 1990; 38: 1045
[15] Mendis C L, Ohishi K, Kawamura Y, Honma T, Kamado S, Hono K.Acta Mater, 2009; 57: 749
[16] Park S S, You B S, Yoon D J.J Mater Process Technol, 2009; 209: 5940
[17] Shahzad M, Wagner L.Mater Sci Eng, 2009; A506: 141
[18] Yang P, Hu Y S, Cui F E. ChinJ Mater Res, 2004; 18: 52
(杨 平, 胡轶嵩, 崔凤娥. 材料研究学报, 2004; 18: 52)
[19] Park S S, Tang W N, You B S. Mater Lett, 2010; 64: 31
[20] Wang Y N, Huang J C.Acta Mater, 2007; 55: 897
[21] Barnett M R.Scr Mater, 2008; 59: 696
[22] Stanford N, Barnett M R.Mater Sci Eng, 2009; A516: 226
[23] Jain J, Poole W J, Sinclair C W, Gharghouri M A.Scr Mater, 2010; 62: 301
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!