Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 32-40    DOI: 10.3724/SP.J.1037.2013.00386
Original Articles Current Issue | Archive | Adv Search |
USE OF SO2/AIR/N2 COVER GASES FOR THE PROTECTION ON MOLTEN MAGNESIUM AND AZ91D ALLOY
WANG Xianfei, XIONG Shoumei()
State Key Laboratory of Automotive Safety and Energy, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
Cite this article: 

WANG Xianfei, XIONG Shoumei. USE OF SO2/AIR/N2 COVER GASES FOR THE PROTECTION ON MOLTEN MAGNESIUM AND AZ91D ALLOY. Acta Metall Sin, 2014, 50(1): 32-40.

Download:  HTML  PDF(762KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Molten magnesium and AZ91D alloy oxidize rapidly during casting process, sulfur dioxide (SO2) mixed with carrier gases can be used to protect the melt by reacting with the melt to form a coherent protective film on the melt surface. In this work, the films formed in SO2/Air/N2 cover gases were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), the formation process and the protective mechanism of the surface film were also discussed. The results show that the protective film is composed of MgO, MgS and MgSO4. MgS increases the pilling and bedworth ratio of the surface film and enhances its protective capability. MgSO4 is the thermodynamically stable phase and its formation is important for the formation of protective film. When SO2/Air/N2 cover gases are used to protect the melt and SO2 content is fixed, air content should be controlled within a certain range.

Key words:  magnesium      magnesium alloy      gas protection      SO2      surface film     
Received:  08 July 2013     
ZTFLH:  TG146.2  
Fund: Supported by National Natural Science Foundation of China (No.51275269), National Key Technologies R&D Program (No.2011BAE22B02) and International S&T Cooperation Program of China (No.2010DFA72760)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00386     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/32

Fig.1  

AZ91D和纯Mg在密封条件下保温后的宏观表面形貌

Fig.2  

AZ91D在密封条件下的表面膜SEM像

Fig.3  

纯Mg在密封条件下的表面膜截面SEM像

Fig.4  

纯Mg在密封条件下的表面膜的各元素含量随溅射时间(样品深度)的变化曲线

Fig.5  

AZ91D在开放条件下的表面膜的各元素含量随溅射时间(样品深度)的变化曲线

Fig.6  

纯Mg在开放条件下的表面膜的各元素含量随溅射时间(样品深度)的变化曲线和截面形貌

Fig.7  

表面膜表层及溅射约50 nm深度处的元素XPS谱

Fig.8  

添加有实际气氛状态点的680 ℃下的Mg-O-S二维平衡状态图[16]

Fig.9  

AZ91D在700 ℃下不同气氛中的氧化增重曲线

[1] Jafari H, Idris M H, Ourdjini A.Corros Sci, 2011; 53: 655
[2] Bartos S C. In: Hryn J ed., Magnesium Technology 2001, Warrendale, PA: TMS, 2001: 43
[3] Ricketts N J, Cashion S P, Bailey R. In: Dahle A ed., Proc 1st Int Light Metals Technology Conference, Brisbane, Australia: CAST, 2003: 275
[4] Mirak A, Davidson C J, Taylor J A.Corros Sci, 2010; 52: 1992
[5] Fruehling J W. PhD Dissertation, University of Michigan, America, 1970
[6] Pettersen G, Øvrelid E, Tranell G, Fenstad J, Gjestland H.Mater Sci Eng, 2002; A332: 285
[7] Aarstad K. PhD Dissertation, Norwegian Universtity of Science and Technology, Norway, 2004
[8] Ha W, Kim Y J.J Alloys Compd, 2006; 422: 208
[9] Argo D, Lefebvre M. In: Kaplan H I ed., Magnesium Technology 2003, San Diego, USA: TMS, 2003: 15
[10] Schubert W, Gjestland H. In: Kainer K U ed., Magnesium Alloy and Their Applications, Weinheim, Chichester: Wiley, 2000: 761
[11] Cashion S P. PhD Dissertation, University of Queensland, Australia, 1998
[12] Cashion S P, Ricketts N J. In: Kaplan H, Hym J, Clow B eds., Magnesium Technology 2000, Warrendale, PA: TMS, 2000: 77
[13] Moulder J F, Stickle W F, Sobol P E, Bomben K D. Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie, MN: Perkin-Elmer, 1992: 45, 53
[14] Ardizzone S, Bianchi C L, Fadoni, M, Vercelli B.Appl Surf Sci, 1997; 119: 253
[15] Wang X M, Zeng X Q, Zhou Y, Wu G S, Yao S S, Lai Y J.J Alloys Compd, 2008; 460: 368
[16] Barin J, Knacke O. Thermochemical Properties of Inorganic Substances. Berlin: Springer Verlag, 1973(Suppl): 1977
[17] Liu M, Shih D S, Parish C, Atrens A.Corros Sci, 2012; 54: 139
[18] Pilling N B, Bedworth R E.J Inst Met, 1923; 28: 534
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[6] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[7] HUANG Songpeng, PENG Can, CAO Gongwang, WANG Zhenyao. Corrosion Behavior of Copper-Nickel Alloys Protected by BTA in Simulated Urban Atmosphere[J]. 金属学报, 2021, 57(3): 317-326.
[8] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[9] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[10] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[11] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[12] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[13] Ting ZHANG,Yuhong ZHAO,Liwen CHEN,Jianquan LIANG,Muxi LI,Hua HOU. Graphene Nanoplatelets Reinforced Magnesium Matrix Composites Fabricated by Thixomolding[J]. 金属学报, 2019, 55(5): 638-646.
[14] QIN Jiayu, LI Xiaoqiang, JIN Peipeng, WANG Jinhui, ZHU Yunpeng. Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite[J]. 金属学报, 2019, 55(12): 1537-1543.
[15] Yantao YAO, Liqing CHEN, Wenguang WANG. Damping Capacities of (B4C+Ti) Hybrid Reinforced Mg and AZ91D Composites Processed by In Situ Reactive Infiltration Technique[J]. 金属学报, 2019, 55(1): 141-148.
No Suggested Reading articles found!