Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (8): 976-980    DOI: 10.3724/SP.J.1037.2013.00155
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND PHASE TRANSFORMATION OF Ni43Co7Mn41Sn9 HIGH TEMPERATURE SHAPE MEMORY ALLOY RIBBON
CHEN Feng1), SU Dexi1), TONG Yunxiang1), NIU Liqun1),WANG Haibo2), LI Li1)
1) Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001
2) College of Physics and Electronic Engineering, Taizhou University, Taizhou 318000
Cite this article: 

CHEN Feng, SU Dexi, TONG Yunxiang, NIU Liqun,WANG Haibo, LI Li. MICROSTRUCTURE AND PHASE TRANSFORMATION OF Ni43Co7Mn41Sn9 HIGH TEMPERATURE SHAPE MEMORY ALLOY RIBBON. Acta Metall Sin, 2013, 49(8): 976-980.

Download:  PDF(791KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

NiCoMnSn shape memory alloy (SMA) is expected to be a promising high temperature SMA. However, the brittleness has become a big obstacle for its practical application. It is known that, grain refining is effective in improving the ductility of a specific metallic alloy. The aim of this work is to investigate the effect of melt--spinning on grain refinement and martensitic transformation and provide a guideline for the development of NiCoMnSn SMA. Ni43Co7Mn41Sn9 high temperature SMA ribbon was prepared by a single-roll melt-spinning method. The microstructure and martensitic transformation were investigated by means of OM, SEM, TEM, XRD and DSC, respectively. The experimental results showed that, the ribbon had a chemical composition close to the master alloy and exhibited a thermoelastic martensitic transformation at about 160℃. The grains in the as-spun ribbon, ranging from 2 μm to 18 μm,were remarkably refined compared with the master alloy. In the as--prepared ribbon,most of the columnar grains grew along the direction vertical to the ribbon plane.At room temperature, non-modulated martensite (tetragonal structure) consisting of twin substructure is determined in the ribbon after relieving the internal stress. Transformation temperatures were lowered by 30℃ after heat treatment at 400℃ for 1 h and then kept nearly constant with the increase of heat treatment temperatures.

Key words:  Ni-Co-Mn-Sn      high temperature shape memory alloy      ribbon      rapid solidification      martensitic transformation     
Received:  02 April 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00155     OR     https://www.ams.org.cn/EN/Y2013/V49/I8/976

[1] Kainuma R, Imano Y, Ito W, Morito H, Sutou Y, Oikawa K, Fujita A,Ishida K, Okamoto S, Kitakami O, Kanomata T.  Appl Phys Lett, 2006; 88: 192513

[2] Han Z D, Wang D H, Qian B, Feng J F, Jiang X F, Du Y W.  Jpn J Appl Phys, 2010; 49: 010211
[3] Krenke T, Duman E, Acet M, Moya X, Mannosa L, Planes A.  J Appl Phys, 2007; 102: 033903
[4] Liu H S, Zhang C L, Han Z D, Xuan H C, Wang D H, Du Y W.  J Alloys Compd, 2009; 467: 27
[5] Srivastava V, Chen X, James R D.  Appl Phys Lett, 2010; 97: 014101
[6] Santamarta R, Cesari E, Pons J, Goryczka T.  Metall Mater Trans, 2004; 35A: 761
[7] Shelyakov A V, Sitnikov N N, Koledov V V, Kuchin D S, Irzhak A I,Tabachkova N Y.  Int J Smart Nano Mater, 2011; 2: 68
[8] Tong Y X, Chen F, Wang B L, Li L, Zheng Y F.  Rare Met Mater Eng, 2010; 39: 2262
(佟运祥, 陈枫, 王本力, 李莉, 郑玉峰. 稀有金属材料与工程, 2010; 39: 2262)
[9] Chernenko V A, Kokorin V V, Vitenko I N.  Smart Mater Struct, 1994; 3: 80
[10] Feng Y, Sui J H, Chen L, Cai W.  Mater Lett, 2009; 63: 965
[11] Miyazaki S, Ishida A.  Mater Sci Eng, 1999; A273-275: 106
[12] Ghodssi R, Lin P.  MEMS Materials and Processes Handbook. New York: Springer, 2011: 361
[13] Zou M, Liu M Z, Dai S H, Xu M, Zhang F J, Gao Z M, Xie M M.  Acta Metall Sin, 2001; 37: 691
 (邹岷, 刘民治, 戴受惠, 徐民, 张凤军, 高忠民, 谢蒙萌. 金属学报, 2001; 37: 691)
[14] Chen F, Tong Y X, Huang Y J, Tian B, Li L, Zheng Y F.  Intermetallics, 2013; 36: 81
[15] Otsuka K, Ren X.  Progress Mater Sci, 2005; 50: 511
[16] He Z R, Zhou J E, Shuichi M.  Acta Metall Sin, 2003; 39: 617
(贺志荣, 周敬恩, 宫崎修一. 金属学报, 2003; 39: 617)
[17] Rama Rao N V, Gopalan R, Manivel Raja M, Arout Chelvane J, Majumdar B, Chandrasekaran V. Scr Mater, 2007; 56: 405
[18] Santos J D, Sanchez T, Alvarez P, Sanchez M L, Sanchez Llamazares J L,Hernando B, Escoda L I, Sunol J J, Varga R.  J Appl Phys, 2008; 103: 07B326
[19] Cai W, Feng Y, Sui J H, Gao Z Y, Dong G F.  Scr Mater, 2008; 58: 830
[20] Pons J, Chernenko V A, Santamarta R, Cesari E.  Acta Mater, 2000; 48: 3027
[21] Jiang C B, Muhammad Y, Deng L F, Wu W, Xu H B.  Acta Mater, 2004; 52: 2779
[22] Segui C, Chernenko V A, Pons J, Cesari E, Khovailo V, Takagi T.  Acta Mater, 2005; 53: 111
[23] Sozinov A, Likhachev A A, Lanska N, Ullakko K.  Appl Phys Lett, 2002; 80: 1746
[24] Heczko O, Svec P, Janickovic D, Ullakko K. IEEE Trans Magn, 2002; 38: 2841
[25] Wu S K, Yang S T.  Mater Lett, 2003; 57: 4291
[1] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[3] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[4] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[5] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[6] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[7] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[8] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[9] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[10] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[11] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
[12] Zhirong HE, Peize WU, Kangkai LIU, Hui FENG, Yuqing DU, Rongyao JI. Microstructure, Phase Transformation and Shape Memory Behavior of Chilled Ti-47Ni Alloy Ribbons[J]. 金属学报, 2018, 54(8): 1157-1164.
[13] Cheng WEI, Changbo KE, Haitao MA, Xinping ZHANG. A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System[J]. 金属学报, 2018, 54(8): 1204-1214.
[14] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[15] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
No Suggested Reading articles found!