|
|
Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy |
XIAO Fei, CHEN Hong, JIN Xuejun( ) |
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
|
Cite this article:
XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy. Acta Metall Sin, 2021, 57(1): 29-41.
|
Abstract Elastocaloric refrigeration is characterized by a high energy efficiency and drastic temperature change, and it requires no refrigerant. It is the best candidate for the non-gas-liquid compression refrigeration technology, which has the advantage of alternate absorption and release of latent heat during solid-solid phase transformation to realize refrigeration. Compared with the magnetocaloric and electrocaloric refrigeration, elastocaloric refrigeration exhibits advantages such as low cost, high cooling rate, and high efficiency. Elastocaloric refrigeration mainly employs shape memory alloys, which have been a research focus in the past decades. This study describes the mechanism and test methods of the elastocaloric effect and summarizes the research progress as well as challenges in the Ti-Ni-based, Cu-based, Fe-based, and Heusler-type shape-memory alloys as elastocaloric materials. Furthermore, a brief perspective on research directions of the elastocaloric effect based on shape memory alloys is presented herein.
|
Received: 21 July 2020
|
|
Fund: National Natural Science Foundation of China(51871151);Natural Science Foundation of Shanghai(20ZR1428800) |
1 |
Coulomb D, Dupont J L, Pichard A. The role of refrigeration in the global economy [A]. Proceedings of the 29th Informatory Note on Refrigeration Technologies [C]. France: International Institute of Refrigeration, 2015
|
2 |
Calm J M. The next generation of refrigerants—Historical review, considerations, and outlook [J]. Int. J. Refrig., 2008, 31: 1123
|
3 |
Moya X, Kar-Narayan S, Mathur N D. Caloric materials near ferroic phase transitions [J]. Nat. Mater., 2014, 13: 439
|
4 |
Crossley S, Mathur N D, Moya X. New developments in caloric materials for cooling applications [J]. AIP Adv., 2015, 5: 067153
|
5 |
Liu J, Gottschall T, Skokov K P, et al. Giant magnetocaloric effect driven by structural transitions [J]. Nat. Mater., 2012, 11: 620
|
6 |
Gschneidner K A, Pecharsky V K. Magnetocaloric materials [J]. Annu. Rev. Mater. Sci., 2000, 30: 387
|
7 |
Hao X H, Zhai J W, Kong L B, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials [J]. Prog. Mater. Sci., 2014, 63: 1
|
8 |
Moya X, Stern-Taulats E, Crossley S, et al. Giant electrocaloric strength in single-crystal BaTiO3 [J]. Adv. Mater., 2013, 25: 1360
|
9 |
Mañosa L, Planes A. Materials with giant mechanocaloric effects: Cooling by strength [J]. Adv. Mater., 2017, 29: 1603607
|
10 |
Mañosa L, Planes A, Acet M. Advanced materials for solid-state refrigeration [J]. J. Mater. Chem., 2013, 1A: 4925
|
11 |
Mañosa L, González-Alonso D, Planes A, et al. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy [J]. Nat. Mater., 2010, 9: 478
|
12 |
Fähler S, Rößler U K, Kastner O, et al. Caloric effects in ferroic materials: New concepts for cooling [J]. Adv. Eng. Mater., 2012, 14: 10
|
13 |
EERE Publication and Product Library. Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies [R]. United States:
|
|
U.S. Department of Energy, 2014
|
14 |
Gough J P. On some thermo-dynamic properties of solids [J]. Philos. Trans. R. Soc. London, 1859, 149: 91
|
15 |
Rodriguez C, Brown L C. The thermal effect due to stress-induced martensite formation in β-CuAlNi single crystals [J]. Metall. Mater. Trans., 1980, 11A: 147
|
16 |
Bonnot E, Romero R, Mañosa L, et al. Elastocaloric effect associated with the martensitic transition in shape-memory alloys [J]. Phys. Rev. Lett., 2008, 100: 125901
|
17 |
Ossmer H, Chluba C, Gueltig M, et al. Local evolution of the elastocaloric effect in TiNi-based films [J]. Shape Mem. Superelast., 2015, 1: 142
|
18 |
Ossmer H, Lambrecht F, Gültig M, et al. Evolution of temperature profiles in TiNi films for elastocaloric cooling [J]. Acta Mater., 2014, 81: 9
|
19 |
Tušek J, Žerovnik A, Čebron M, et al. Elastocaloric effect vs fatigue life: Exploring the durability limits of Ni-Ti plates under pre-strain conditions for elastocaloric cooling [J]. Acta Mater., 2018, 150: 295
|
20 |
Gràcia-Condal A, Stern-Taulats E, Planes A, et al. The giant elastocaloric effect in a Cu-Zn-Al shape-memory alloy: A calorimetric study [J]. Phys. Status Solidi, 2018, 255B: 1700422
|
21 |
Buehler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi [J]. J. Appl. Phys., 1963, 34: 1475
|
22 |
Cui J, Wu Y M, Muehlbauer J, et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires [J]. Appl. Phys. Lett., 2012, 101: 073904
|
23 |
Tušek J, Engelbrecht K, Mikkelsen L P, et al. Elastocaloric effect of Ni-Ti wire for application in a cooling device [J]. J. Appl. Phys., 2015, 117: 124901
|
24 |
Tušek J, Engelbrecht K, Millán-Solsona R, et al. The elastocaloric effect: A way to cool efficiently [J]. Adv. Energy Mater., 2015, 5: 1500361
|
25 |
Tušek J, Engelbrecht K, Eriksen D, et al. A regenerative elastocaloric heat pump [J]. Nat. Energy, 2016, 1: 16134
|
26 |
Bechtold C, Chluba C, Lima d M R, et al. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films [J]. Appl. Phys. Lett., 2012, 101: 091903
|
27 |
Chen H, Xiao F, Liang X, et al. Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement [J]. Scr. Mater., 2019, 162: 230
|
28 |
Chluba C, Ge W W, de Miranda R L, et al. Ultralow-fatigue shape memory alloy films [J]. Science, 2015, 348: 1004
|
29 |
Chen H, Xiao F, Liang X, et al. Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44Ni-5Cu-1Al (at%) alloy [J]. Acta Mater., 2018, 158: 330
|
30 |
Chen H, Xiao F, Liang X, et al. Giant elastocaloric effect with wide temperature window in an Al-doped nanocrystalline Ti-Ni-Cu shape memory alloy [J]. Acta Mater., 2019, 177: 169
|
31 |
Hou H L, Simsek E, Ma T, et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing [J]. Science, 2019, 366: 1116
|
32 |
Chen H, Xiao F, Zhu L, et al. Elastocaloric effect with a broad temperature window and low energy loss in an ultrafine-grained Ti-44Ni-5Cu-1Al (at%) shape memory alloy, in press
|
33 |
Wagner M, Sawaguchi T, Kausträter G, et al. Structural fatigue of pseudoelastic NiTi shape memory wires [J]. Mater. Sci. Eng., 2004, A378: 105
|
34 |
Zhang Y H, You Y J, Moumni Z, et al. Experimental and theoretical investigation of the frequency effect on low cycle fatigue of shape memory alloys [J]. Int. J. Plast., 2017, 90: 1
|
35 |
Yu C, Kang G Z, Kan Q H, et al. Rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy: Thermo-mechanical coupled and physical mechanism-based constitutive model [J]. Int. J. Plast., 2015, 72: 60
|
36 |
Ossmer H, Chluba C, Gueltig M, et al. Local evolution of the elastocaloric effect in TiNi-based films [J]. Shape Mem. Superelast., 2015, 1: 142
|
37 |
Schmidt M, Kirsch S M, Seelecke S, et al. Elastocaloric cooling: From fundamental thermodynamics to solid state air conditioning [J]. Sci. Technol. Built Environ., 2016, 22: 475
|
38 |
Schmidt M, Ullrich J, Wieczorek A, et al. Thermal stabilization of NiTiCuV shape memory alloys: Observations during elastocaloric training [J]. Shape Mem. Superelast., 2015, 1: 132
|
39 |
Li S H, Cong D Y, Sun X M, et al. Wide-temperature-range perfect superelasticity and giant elastocaloric effect in a high entropy alloy [J]. Mater. Res. Lett., 2019, 7: 482
|
40 |
Xiao Y, Zeng P, Lei L P, et al. In situ observation on temperature dependence of martensitic transformation and plastic deformation in superelastic NiTi shape memory alloy [J]. Mater. Des., 2017, 134: 111
|
41 |
Engelbrecht K, Tušek J, Sanna S, et al. Effects of surface finish and mechanical training on Ni-Ti sheets for elastocaloric cooling [J]. APL Mater., 2016, 4: 064110
|
42 |
Pataky G J, Ertekin E, Sehitoglu H. Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl [J]. Acta Mater., 2015, 96: 420
|
43 |
Wu Y, Ertekin E, Sehitoglu H. Elastocaloric cooling capacity of shape memory alloys—Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation [J]. Acta Mater., 2017, 135: 158
|
44 |
Soto-Parra D, Vives E, Mañosa L, et al. Elastocaloric effect in Ti-Ni shape-memory wires associated with the B2↔B19' and B2↔R structural transitions [J]. Appl. Phys. Lett., 2016, 108: 071902
|
45 |
Liang X, Xiao F, Jin M J, et al. Elastocaloric effect induced by the rubber-like behavior of nanocrystalline wires of a Ti-50.8Ni (at.%) alloy [J]. Scr. Mater., 2017, 134: 42
|
46 |
Xiao F, Fukuda T, Kakeshita T. Inverse elastocaloric effect in a Ti-Ni alloy containing aligned coherent particles of Ti3Ni4 [J]. Scr. Mater., 2016, 124: 133
|
47 |
Miyazaki S, Otsuka K. Development of shape memory alloys [J]. ISIJ Int., 1989, 29: 353
|
48 |
Miura S, Morita Y, Nakanishi N. Shape Memory Effects in Alloys [M]. Boston, MA: Springer, 1975: 389
|
49 |
Miura S, Maeda S, Nakanishi N. Pseudoelasticity in Au-Cu-Zn thermoelastic martensite [J]. Philo. Mag., 1974, 30: 565
|
50 |
Brown L C. The thermal effect in pseudoelastic single crystals of β-CuZnSn [J]. Metall. Mater. Trans., 1981, 12A: 1491
|
51 |
Mañosa L, Planes A, Ortín J, et al. Entropy change of martensitic transformations in Cu-based shape-memory alloys [J]. Phys. Rev., 1993, 48B: 3611
|
52 |
Vives E, Burrows S, Edwards R S, et al. Temperature contour maps at the strain-induced martensitic transition of a Cu-Zn-Al shape-memory single crystal [J]. Appl. Phys. Lett., 2011, 98: 011902
|
53 |
Mañosa L, Jarque-Farnos S, Vives E, et al. Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys [J]. Appl. Phys. Lett., 2013, 103: 211904
|
54 |
Omori T, Kusama T, Kawata S, et al. Abnormal grain growth induced by cyclic heat treatment [J]. Science, 2013, 341: 1500
|
55 |
Chen Y, Zhang X Z, Dunand D C, et al. Shape memory and superelasticity in polycrystalline Cu-Al-Ni microwires [J]. Appl. Phys. Lett., 2009, 95: 171906
|
56 |
Yuan B, Zhu X J, Zhang X X, et al. Elastocaloric effect with small hysteresis in bamboo-grained Cu-Al-Mn microwires [J]. J. Mater. Sci., 2019, 54: 9613
|
57 |
Yuan B, Qian M F, Zhang X X, et al. Enhanced cyclic stability of elastocaloric effect in oligocrystalline Cu-Al-Mn microwires via cold-drawing [J]. Int. J. Refrig., 2020, 114: 54
|
58 |
Yuan B, Qian M F, Zhang X X, et al. Grain structure related inhomogeneous elastocaloric effects in Cu-Al-Mn shape memory microwires [J]. Scr. Mater., 2020, 178: 356
|
59 |
Wayman C M. On memory effects related to martensitic transformations and observations in β-brass and Fe3Pt [J]. Scr. Metall., 1971, 5: 489
|
60 |
Peng H B, Chen J, Wang Y N, et al. Key factors achieving large recovery strains in polycrystalline Fe-Mn-Si-based shape memory alloys: A review [J]. Adv. Eng. Mater., 2018, 20: 1700741
|
61 |
Maki T, Tamura I. On the thin plate martensite in ferrous alloys and its various properties [J]. Bull. Jpn. Inst. Met., 1984, 23: 229
|
|
牧 正志, 田村 今男. 鉄合金の“thin plate”マルテンサイトとその性質 [J]. 日本金属学会会報, 1984, 23: 229
|
62 |
Yang G S, Jonnasson R, Bake S N, et al. Phase transformations of ferromagnetic Fe-Pd-Pt-based shape memory alloys [J]. Mater. Devices Smart Syst., 2004, 785: 475
|
63 |
Nikitin S A, Myalikgulyev G, Annaorazov M P, et al. Giant elastocaloric effect in FeRh alloy [J]. Phys. Lett., 1992, 171A: 234
|
64 |
Annaorazov M P, Nikitin S A, Tyurin A L, et al. Heat pump cycles based on the AF-F transition in Fe-Rh alloys induced by tensile stress [J]. Int. J. Refrig., 2002, 25: 1034
|
65 |
Manekar M, Roy S B. Reproducible room temperature giant magnetocaloric effect in Fe-Rh [J]. J. Phys., 2008, 41D: 192004
|
66 |
Manekar M, Roy S B. Very large refrigerant capacity at room temperature with reproducible magnetocaloric effect in Fe0.975Ni0.025Rh [J]. J. Phys., 2011, 44D: 242001
|
67 |
Barua R, Jiménez-Villacorta F, Lewis L H. Towards tailoring the magnetocaloric response in FeRh-based ternary compounds [J]. J. Appl. Phys., 2014, 115: 17A903
|
68 |
Zverev V I, Saletsky A M, Gimaev R R, et al. Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6 [J]. Appl. Phys. Lett., 2016, 108: 192405
|
69 |
Kamantsev A P, Amirov A A, Koshkid􀆳ko Y S,et al. Magnetocaloric effect in alloy Fe49Rh51 in pulsed magnetic fields up to 50 T [J]. Phys. Solid State, 2020, 62: 160
|
70 |
Annaorazov M P, Nikitin S A, Tyurin A L, et al. Anomalously high entropy change in FeRh alloy [J]. J. Appl. Phys., 1996, 79: 1689
|
71 |
Gràcia-Condal A, Stern-Taulats E, Planes A, et al. Caloric response of Fe49Rh51 subjected to uniaxial load and magnetic field [J]. Phys. Rev. Mater., 2018, 2: 084413
|
72 |
Xiao F, Fukuda T, Kakeshita T. Significant elastocaloric effect in a Fe-31.2Pd (at.%) single crystal [J]. Appl. Phys. Lett., 2013, 102: 161914
|
73 |
Xiao F, Jin M J, Liu J, et al. Elastocaloric effect in Ni50Fe19Ga27Co4 single crystals [J]. Acta Mater., 2015, 96: 292
|
74 |
Xiao F, Fukuda T, Kakeshita T, et al. Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe-31.2Pd (at.%) alloy [J]. Acta Mater., 2015, 87: 8
|
75 |
Tanaka Y, Himuro Y, Kainuma R, et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity [J]. Science, 2010, 327: 1488
|
76 |
Omori T, Ando K, Okano M, et al. Superelastic effect in polycrystalline ferrous alloys [J]. Science, 2011, 333: 68
|
77 |
Omori T, Abe S, Tanaka Y, et al. Thermoelastic martensitic transformation and superelasticity in Fe-Ni-Co-Al-Nb-B polycrystalline alloy [J]. Scr. Mater., 2013, 69: 812
|
78 |
Tseng L W, Ma J, Hornbuckle B C, et al. The effect of precipitates on the superelastic response of [100] oriented FeMnAlNi single crystals under compression [J]. Acta Mater., 2015, 97: 234
|
79 |
Krooß P, Somsen C, Niendorf T, et al. Cyclic degradation mechanisms in aged FeNiCoAlTa shape memory single crystals [J]. Acta Mater., 2014, 79: 126
|
80 |
Huang P, Peng H B, Wang S L, et al. Relationship between martensitic reversibility and different nano-phases in a FeMnAlNi shape memory alloy [J]. Mater. Charact., 2016, 118: 22
|
81 |
Hu F X, Shen B G, Sun J R. Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy [J]. Appl. Phys. Lett., 2000, 76: 3460
|
82 |
Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation [J]. Nature, 2006, 439: 957
|
83 |
Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys [J]. Nat. Mater., 2005, 4: 450
|
84 |
Liu J, Woodcock T G, Scheerbaum N, et al. Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni-Mn-In-Co ribbons [J]. Acta Mater., 2009, 57: 4911
|
85 |
Marcos J, Planes A, Mañosa L, et al. Magnetic field induced entropy change and magnetoelasticity in Ni-Mn-Ga alloys [J]. Phys. Rev., 2002, 66B: 224413
|
86 |
Soto-Parra D E, Vives E, González-Alonso D, et al. Stress- and magnetic field-induced entropy changes in Fe-doped Ni-Mn-Ga shape-memory alloys [J]. Appl. Phys. Lett., 2010, 96: 071912
|
87 |
Castillo-Villa P O, Soto-Parra D E, Matutes-Aquino J A, et al. Caloric effects induced by magnetic and mechanical fields in a Ni50Mn25-xGa25Cox magnetic shape memory alloy [J]. Phys. Rev., 2011, 83B: 174109
|
88 |
Huang C H, Wang Y, Tang Z, et al. Influence of atomic ordering on elastocaloric and magnetocaloric effects of a Ni-Cu-Mn-Ga ferromagnetic shape memory alloy [J]. J. Alloys Compd., 2015, 630: 244
|
89 |
Segui C, Torrens-Serra J, Cesari E, et al. Optimizing the caloric properties of Cu-doped Ni-Mn-Ga alloys [J]. Materials, 2020, 13: 419
|
90 |
Li D, Li Z B, Yang J J, et al. Large elastocaloric effect driven by stress-induced two-step structural transformation in a directionally solidified Ni55Mn18Ga27 alloy [J]. Scr. Mater., 2019, 163: 116
|
91 |
Wei L S, Zhang X X, Liu J, et al. Orientation dependent cyclic stability of the elastocaloric effect in textured Ni-Mn-Ga alloys [J]. AIP Adv., 2018, 8: 055312
|
92 |
Wei L S, Zhang X X, Gan W M, et al. Hot extrusion approach to enhance the cyclic stability of elastocaloric effect in polycrystalline Ni-Mn-Ga alloys [J]. Scr. Mater., 2019, 168: 28
|
93 |
Lu B F, Xiao F, Yan A R, et al. Elastocaloric effect in a textured polycrystalline Ni-Mn-In-Co metamagnetic shape memory alloy [J]. Appl. Phys. Lett., 2014, 105: 161905
|
94 |
Lu B F, Zhang P N, Xu Y, et al. Elastocaloric effect in Ni45Mn36.4In13.6Co5 metamagnetic shape memory alloys under mechanical cycling [J]. Mater. Lett., 2015, 148: 110
|
95 |
Zhao D W, Liu J, Feng Y, et al. Giant elastocaloric effect and its irreversibility in [001]-oriented Ni45Mn36.5In13.5Co5 meta-magnetic shape memory alloys [J]. Appl. Phys. Lett., 2017, 110: 021906
|
96 |
Shen Q, Zhao D W, Sun W, et al. The effect of Tb on elastocaloric and mechanical properties of Ni-Mn-In-Tb alloys [J]. J. Alloys Compd., 2017, 696: 538
|
97 |
Yang Z, Cong D Y, Sun X M, et al. Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys [J]. Acta Mater., 2017, 127: 33
|
98 |
Tang X H, Feng Y, Wang H B, et al. Enhanced elastocaloric effect and cycle stability in B and Cu co-doping Ni-Mn-In polycrystals [J]. Appl. Phys. Lett., 2019, 114: 033901
|
99 |
Hernández-Navarro F, Camarillo-Garcia J P, Aguilar-Ortiz C O, et al. The influence of texture on the reversible elastocaloric effect of a polycrystalline Ni50Mn32In16Cr2 alloy [J]. Appl. Phys. Lett., 2018, 112: 164101
|
100 |
Lu B, Song M, Zhou Z, et al. Reducing mechanical hysteresis via tuning the microstructural orientations in Heusler-type Ni44.8Mn36.9In13.3Co5.0 elastocaloric alloys [J]. J. Alloys Compd., 2019, 785: 1023
|
101 |
Huang X M, Wang L D, Liu H X, et al. Correlation between microstructure and martensitic transformation, mechanical properties and elastocaloric effect in Ni-Mn-based alloys [J]. Intermetallics, 2019, 113: 106579
|
102 |
Huang Y J, Hu Q D, Bruno N M, et al. Giant elastocaloric effect in directionally solidified Ni-Mn-In magnetic shape memory alloy [J]. Scr. Mater., 2015, 105: 42
|
103 |
Sun W, Liu J, Lu B F, et al. Large elastocaloric effect at small transformation strain in Ni45Mn44Sn11 metamagnetic shape memory alloys [J]. Scr. Mater., 2016, 114: 1
|
104 |
Shen Y, Sun W, Wei Z Y, et al. Orientation dependent elastocaloric effect in directionally solidified Ni-Mn-Sn alloys [J]. Scr. Mater., 2019, 163: 14
|
105 |
Li Y, Sun W, Zhao D W, et al. An 8 K elastocaloric temperature change induced by 1.3% transformation strain in Ni44Mn45-xSn11-Cux alloys [J]. Scr. Mater., 2017, 130: 278
|
106 |
Millán-Solsona R, Stern-Taulats E, Vives E, et al. Large entropy change associated with the elastocaloric effect in polycrystalline Ni-Mn-Sb-Co magnetic shape memory alloys [J]. Appl. Phys. Lett., 2014, 105: 241901
|
107 |
Qu Y H, Gràcia-Condal A, Mañosa L, et al. Outstanding caloric performances for energy-efficient multicaloric cooling in a Ni-Mn-based multifunctional alloy [J]. Acta Mater., 2019, 177: 46
|
108 |
Cong D Y, Xiong W X, Planes A, et al. Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys [J]. Phys. Rev. Lett., 2019, 122: 255703
|
109 |
Li Y, Zhao D W, Liu J, et al. Energy-efficient elastocaloric cooling by flexibly and reversibly transferring interface in magnetic shape-memory alloys [J]. ACS Appl. Mater. Interfaces, 2018, 10: 25438
|
110 |
Kirsch S M, Welsch F, Michaelis N, et al. NiTi-based elastocaloric cooling on the macroscale: From basic concepts to realization [J]. Energy Technol., 2018, 6: 1567
|
111 |
Kirsch S M, Schmidt M, Welsch F, et al. Development of a shape memory based air conditioning system [A]. 59th Ilmenau Scientific Colloquium [C]. Ilmenau: Technische Universität Ilmenau, 2017
|
112 |
Michaelis N, Welsch F, Kirsch S M, et al. Experimental parameter identification for elastocaloric air cooling [J]. Int. J. Refrig., 2019, 100: 167
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|