Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (8): 981-988    DOI: 10.3724/SP.J.1037.2013.00164
Current Issue | Archive | Adv Search |
A PHASE FIELD STUDY FOR SCALING RULES OF GRAIN COARSENING IN POLYCRYSTALLINE SYSTEM CONTAINING SECOND-PHASE PARTICLES
ZHAO Yan, ZHANG Hongyu, WEI Hua, ZHENG Qi, JIN Tao, SUN Xiaofeng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZHAO Yan, ZHANG Hongyu, WEI Hua, ZHENG Qi, JIN Tao, SUN Xiaofeng. A PHASE FIELD STUDY FOR SCALING RULES OF GRAIN COARSENING IN POLYCRYSTALLINE SYSTEM CONTAINING SECOND-PHASE PARTICLES. Acta Metall Sin, 2013, 49(8): 981-988.

Download:  PDF(750KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The kinetic scaling of the grain coarsening in the polycrystalline system containing the dispersive second-phase particles were studied by phase field method. The obtained results showed that the increase in the volume fraction of second--phase particles enhanced the growth resistance of grain, resulting in the remarkable deviation of the relationship between the average grain radius Ra and the time t from the non-linear relationship t=ARam+B. The kinetic exponent m also increased with the increasing volume fraction of second-phase particles. No matter whether the second-phase particles existed or not in the system studied, the scaling rule had been satisfied at the late stage of grain coarsening. The increase in the volume fraction of the second-phase particles would cause the decrease in the peak value of structure factor profile. When the value of the wave vector k increased to a certain value, the structure factor curve of the studied system was essentially coincident. With the increase in the volume fraction of second-phase particles, The peak values of scaling function decreased and the peak width became wider. According to structure factor and scaling function, it was known that with the increase in the volume fraction of second-phase particles, the interaction among grains weakens and the grain size would become more uniform during the grain coarsening.

Key words:  phase field method      coarsening kinetics      structure function      scaling rule     
Received:  07 April 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00164     OR     https://www.ams.org.cn/EN/Y2013/V49/I8/981

[1] Fan D, Chen L Q.  Acta Mater, 1997; 45: 611

[2] Zhang H L, Tian J L, Hu X Y, Gao Y J.  Guangxi Sci, 2009; 16: 297
 (张海林, 田军龙, 胡项英, 高英俊. 广西科学, 2009; 16: 297)
[3] Tikare V, Holm E A, Fan D, Chen L Q.  Acta Mater, 1999; 47: 363
[4] Moelans N, Blanpain B, Wollants P.  Acta Mater, 2005; 53: 1771
[5] Fan D, Chen L Q.  Acta Mater, 1997; 45: 3297
[6] Hu S Y, Chen L Q.  Acta Mater, 2001; 49: 1879
[7] Zhu J Z, Wang T, Ardell A J, Zhou S H, Liu Z K, Chen L Q.  Acta Mater, 2004; 52: 2837
[8] Li D Y, Chen L Q.  Scr Mater, 1997; 37: 1271
[9] Palmer M A, Glicksman M E, Rajan K.  Scr Mater, 2003; 48: 1173
[10] Hillert M, Sundman B.  Acta Metall, 1976; 24: 731
[11] Jahazi M, Jonas J J.  Mater Sci Eng, 2002; A335: 49
[12] Xu T, Song S.  Acta Metall, 1989; 37: 2499
[13] Joel L L, Marro J, Kalos M H.  Acta Metall, 1982; 30: 297
[14] Fan D, Chen L Q, Chen S P.  Mater Sci Eng, 1997; A238: 78
[15] Ostwald W.  Lehrbuch der Allgemeinen Chemie. Vol.2, Germany: Leipzig Press, 1896: 1
[16] Kobayashi K, Blinc K K, Cevc R P, Share M.  Phys Rev, 1967; 159: 411
[17] Rogers T M, Elder K R, Rashmi C D.  Phys Rev, 1988; 37B: 9638
[18] Seigert M, Rao M.  Phys Rev Lett, 1993; 70: 1956
[19] Allen S M, Cahn J W.  Acta Metall, 1979; 27: 1085
[20] Gao Y J, Zhang H L, Jin X, Huang C G, Luo Z R.  Acta Metall Sin, 2009; 45: 1190
 (高英俊, 张海林, 金星, 黄创高, 罗志荣. 金属学报, 2009; 45: 1190)
[21] Gill F X, Rodrringer D T, Krill III C E.  Acta Mater, 2003; 51: 2743
[22] Fltham P.  Acta Metall, 1957; 5: 97
[23] Jones G R, Jackson M, O'Grady K.  J Magn Magn Mater, 1999; 193: 75
[24] Liftshitz I M, Slyozov V V.  J Phys Chem Solids, 1961; 19: 35
[25] Hillert M.  Acta Metall, 1965; 13: 227
[26] Wang K G, Ding X, Chang K, Chen L Q.  J Appl Phys, 2010; 107: 061801
[27] Ohnogi H, Shiwa Y.  Phys Rev, 2011; 84E: 011611
[28] Brumberger H.  Modern Aspects of Small--Angle Scattering. Dordrecht:Kluwer Academic Publishers, 1995: 57
[29] Lebedev V, Didebko V, Lapin A, Konoplev K.  J Appl Crystal, 2003; 36: 629
[30] Amitabha C, Ra\ul T T, James D G.  Phys Rev, 1993; 47E: 3025
[31] Joel L L, Marro J, Kalos M H.  Acta Metall, 1982; 30: 297
[32] Fratzl P, Lebowitz J L.  Acta Metall, 1989; 37: 3245
[33] Liu J M, Wu Z C, Liu Z G.  Acta Phys Sin, 1997; 46: 1146
 (刘俊明, 吴状春, 刘治国. 物理学报, 1997; 46: 1146)
[34] Li Y S, Chen Z, Wang Y X, Lu Y L, Zhang J J.  Prog Nat Sci, 2005; 16: 604
 (李永胜, 陈铮, 王永欣, 卢艳丽, 张建军. 自然科学进展, 2005; 16: 604)
[35] Fratzl P, Lebowitz J L, Penrose O, Amar J.  Phys Rev, 1991; 44B: 4794
[36] Tokuyama M, Enomoto Y, Kawasaki K.  Physica, 1987; 143A: 183
[37] Anderson M P, Srolovitz D J, Grest G S, Sahni P S.  Acta Metall, 1984; 32: 783
[38] Chen L Q.  Annu Rev Mater Res, 2002; 32: 113
[39] Weaire D, Kermode J P.  Philos Mag, 1983; 48B: 245
[40] Huang F, Di H S, Wang G S.  Acta Phys Sin, 2009; 58: 313
 (黄锋, 邸洪双, 王广山. 物理学报, 2009; 58: 313)
[41] Chen L Q, Yang W.  Phys Rev, 1994; 50B: 15752
[42] Burke J, Turnbull D.  Prog Met Phys, 1952; 3: 220
[43] Amitabha C, Raul T, James D G.  Phys Rev, 1993; 47E: 3025
[1] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[2] Cheng WEI, Changbo KE, Haitao MA, Xinping ZHANG. A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System[J]. 金属学报, 2018, 54(8): 1204-1214.
[3] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[4] TAN Meilin, WANG Changshuai, GUO Yongan, GUO Jianting, ZHOU Lanzhang. INFLUENCE OF Ti/Al RATIOS ON γ′ COARSENING BEHAVIOR AND TENSILE PROPERTIES OF GH984G ALLOY DURING LONG-TERM THERMAL EXPOSURE[J]. 金属学报, 2014, 50(10): 1260-1268.
[5] KE Changbo, CAO Shanshan, MA Xiao, HUANG Ping, ZHANG Xinping. PHASE FIELD SIMULATION OF AUTO-CATALYTIC GROWTH EFFECT OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2013, 49(1): 115-122.
[6] KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2010, 46(1): 84-90.
No Suggested Reading articles found!