Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (8): 969-975    DOI: 10.3724/SP.J.1037.2013.00139
Current Issue | Archive | Adv Search |
Cu56Hf27Ti17 BULK METALLIC GLASS WITH HIGH FRACTURE TOUGHNESS
ZHU Zhendong, XU Jian
Shenyang National Laboratory for Materials Science, Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016
Cite this article: 

ZHU Zhendong, XU Jian. Cu56Hf27Ti17 BULK METALLIC GLASS WITH HIGH FRACTURE TOUGHNESS. Acta Metall Sin, 2013, 49(8): 969-975.

Download:  PDF(775KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a sort of quasi-brittle materials, fracture toughness of bulk metallic glasses (BMGs) is of paramount importance for their engineering application. Among the BMG families, Cu-based BMGs are of interest due to their low cost, high strength and less brittleness. As indicated in previous work, the Cu49Hf42Al9 BMG exhibits a good combination of toughness and glass forming ability (GFA). Moreover, toughness of BMG significantly depends on alloy composition. In the Zr-Cu-Al system, it was suggested that increasing the Al content in the alloy does not favor to the plasticity of the glass. Then, it is expected that Al-free Cu-Hf-Ti BMGs may be tougher than the Cu49Hf42Al9 BMG. In addition, notched cylindrical samples were used for the toughness assessment in previous investigation, which probably introduce an overestimation in toughness in comparison with archival data of engineering materials. To obtain the glassy plate samples for toughness measurements to meet the ASTM E399 requirement, alloys with robust GFA is necessary. In this work, the composition dependence of GFA for ternary Cu-Hf-Ti alloys was revisited. The alloys with the optimal GFA are located around the Cu56Hf27Ti17 and Cu57Hf27Ti16. The critical diameter to form the BMG rods was determined to be 5 mm. Then, the Cu56Hf27Ti17 BMG plates of 2.5 mm in thickness can be fabricated as the specimens for toughness assessments. Using the single-edge notched specimen for three-point bending test, the notch toughness K Q of Cu56Hf27Ti17 BMG was determined to be(92±10) MPa·m1/2. It is nearly doubled with respect to the Cu49Hf42Al9 BMG (KQ=(56±9) MPa·m1/2).It means that the Cu56Hf27Ti17 BMG is the toughest among currently-available Cu-based BMGs. Such high toughness of Cu56Hf27Ti17 BMG also correlates with its moderate Poisson's ratio (ν=0.361) and low shear modulus (G=38.6 GPa). The enhanced toughness of Cu56Hf27Ti17 BMG is associated with the extended plastic zone size at the notch tip with the proliferation of shear banding events. The fact that the Cu56Hf27Ti17 superior to Cu49Hf42Al9 BMG in toughness seemingly supports that Al element has an unfavorable effect on the toughness of Cu-Zr/Hf-based BMGs.

Key words:  Cu alloy      metallic glass      fracture toughness      elastic constant     
Received:  28 March 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00139     OR     https://www.ams.org.cn/EN/Y2013/V49/I8/969

[1] Greer A, Ma E.  MRS Bull, 2007; 32: 611

[2] Schuh C A, Hufnagel T C, Ramamurty U.  Acta Mater, 2007; 55: 4067
[3] Meyers M A, Chawla K K.  Mechanical Behavior of Materials. 2nd Ed., New York: Cambridge University Press, 2009: 404
[4] Xu J, Ramamurty U, Ma E.  JOM, 2010; 62: 10
[5] Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L,Ritchie R O.  Nat Mater, 2011; 10: 123
[6] He Q, Cheng Y Q, Ma E, Xu J.  Acta Mater, 2011; 59: 202
[7] He Q, Shang J K, Ma E, Xu J.  Acta Mater, 2012; 60: 4940
[8] Gu X J, Poon S J, Shiflet G J, Lewandowski J J.  Acta Mater, 2010; 58: 1708
[9] Schroers J, Johnson W L.  Phys Rev Lett, 2004; 93: 255506
[10] Jia P, Guo H, Li Y, Xu J, Ma E.  Scr Mater, 2006; 54: 2165
[11] Dai C L, Guo H, Shen Y, Li Y, Ma E, Xu J.  Scr Mater, 2006; 54: 1403
[12] Shen Y, Ma E, Xu J.  J Mater Sci Technol, 2008; 24: 149
[13] Inoue A, Zhang W, Zhang T, Kurosaka K.  J Mater Res, 2001; 16: 2836
[14] Figueroa I A, Davies H A, Todd I.  J Alloys Compd, 2007; 434-435: 164
[15] Choi-Yim H, Conner R D.  J Alloys Compd, 2008; 459: 160
[16] Jia P, Zhu Z D, Ma E, Xu J.  Scr Mater, 2009; 61: 137
[17] Cheng Y Q, Ma E, Sheng H W.  Phys Rev Lett, 2009; 102: 245501
[18] Zhang L, Cheng Y Q, Cao A J, Xu J, Ma E.  Acta Mater, 2009; 57: 1154
[19] Cheng Y Q, Sheng H W, Ma E.  Phys Rev, 2008; 78B: 014207
[20] Cheng Y Q, Cao A J, Ma E.  Acta Mater, 2009; 57: 3253
[21] Lewandowski J J, Wang W H, Greer A L.  Philos Mag Lett, 2005; 85: 77
[22] Lewandowski J J, Gu X J, Nouri A S, Poon S J, Shiflet G J.  Appl Phys Lett,2008; 92: 091918
[23] Conner R D, Rosakis A J, Johnson W L, Owen D M.  Scr Mater, 1997; 37: 1373
[24] Demetriou M D, Kaltenboeck G, Suh J Y, Garrett G, Floyd M, Crewdson C,
Hofmann D C, Kozachkov H, Wiest A, Schramm J P, Johnson W L.  Appl Phys Lett, 2009; 95: 041907
[25] Suh J Y, Conner R D, Kim C P, Demetriou M D, Johnson W L.  J Mater Res, 2010; 25: 982
[26] Lowhaphandu P, Lewandowski J J.  Scr Mater, 1998; 38: 1811
[27] Henann D L, Anand L.  Acta Mater, 2009; 57: 6057
[28] Kawashima A, Kurishita H, Kimura H, Zhang T, Inoue A.  Mater Trans, 2005; 46: 1725
[29] Chen H S, Krause J T, Coleman E.  J Non-Cryst Solids, 1975; 18: 157
[30] Wang S G, Shi L L, Xu J.  J Mater Res, 2011; 26: 923
[31] Zhu Z D, Jia P, Xu J.  Scr Mater, 2011; 64: 785
[32] Johnson W L, Samwer K.  Phys Rev Lett, 2005; 95: 195501
[33] He Q, Xu J.  J Mater Sci Technol, 2012; 28: 1109
[34] Johnson W L, Demetriou M D, Harmon J S, Lind M L, Samwer K.  MRS Bull, 2007; 32: 644
[35] Demetriou M D, Harmon J S, Tao M, Duan G, Samwer K, Johnson W L.  Phys Rev Lett, 2006; 97: 065502
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[3] ZHU Xiaohui, LIU Xiangbing, WANG Runzhong, LI Yuanfei, LIU Wenqing. Effects of Ar Ion Irradiation on Microstructure of Fe-Cu Alloys at 290oC[J]. 金属学报, 2022, 58(7): 905-910.
[4] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[5] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[6] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[7] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[9] LI Ning, HUANG Xin. Recent Advances on 3D Printed Bulk Metallic Glasses[J]. 金属学报, 2021, 57(4): 529-541.
[10] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[11] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[12] ZENG Qiaoshi, YIN Ziliang, LOU Hongbo. Polyamorphic Transitions in Metallic Glasses[J]. 金属学报, 2021, 57(4): 491-500.
[13] JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. 金属学报, 2021, 57(4): 425-438.
[14] GUAN Pengfei, SUN Shengjun. Atomic-Level Study in the Structure and Its Instability of Metallic Glasses[J]. 金属学报, 2021, 57(4): 501-514.
[15] BI Jiazi, LIU Xiaobin, LI Ran, ZHANG Tao. Tribological Properties of Polyalphaolefin (PAO6) Lubricant Modified with Particles Additives of Metallic Glass[J]. 金属学报, 2021, 57(4): 559-566.
No Suggested Reading articles found!