Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (7): 863-870    DOI: 10.3724/SP.J.1037.2013.00098
Current Issue | Archive | Adv Search |
CREEP MECHANISM OF A Ni-Co BASE WROUGHT SUPERALLOY
XU Ling 1), CHU Zhaokuang1), CUI Chuanyong1), GU Yuefeng2), SUN Xiaofeng 1)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) National Institute for Materials Science, Tsukuba 305-0047, Japan
Cite this article: 

XU Ling, CHU Zhaokuang, CUI Chuanyong, GU Yuefeng, SUN Xiaofeng. CREEP MECHANISM OF A Ni-Co BASE WROUGHT SUPERALLOY. Acta Metall Sin, 2013, 49(7): 863-870.

Download:  PDF(4095KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based wrought superalloys are widely used in the hot section of aircraft gas turbine engines for their capability in retaining strength and resisting creep, fatigue, and oxidation at elevated temperature. With the development of the newer generation turbine disk alloys, it is highly imperative for aircraft engine manufacturers to substantiate the use of the materials by conducting a thorough examination of their mechanical properties. As these components are subjected to elevated temperatures and complex stress state in the service process where time dependent creep is the primary deformation failure mechanism and life—limiting factor for the component, it is of great importance to evaluate the relationship between microstructure, creep behavior and the underlying creep deformation mechanism. Therefore, the main objective of the present research aims at investigating the fundamental relationship between external creep condition and internal creep deformation mechanism in a new wrought superalloy with low stacking fault energy (SFE). In order to study the influences of the loading stress level and temperature on the creep deformation mechanism, stress range of 345—840 MPa and temperature range of 650—815℃ were selected to carry out the creep experiment. The results show that two kinds of γ′ with different diameters distributed in the matrix and the larger one began to coarsen when the creep temperature increased to 725℃. Under creep temperature of 650℃,  the formation of SF resulted from the shearing of γ′ by dislocations dominated the creep deformation. When the temperature range was raised up to 725—760℃, SF and microtwins were the main  microstructures after creep deformation. With further increasingthe temperature and load, instead of accommodating only in the γ′, the SF and microtwins penetrated thewhole γ′ and matrix area. When the temperature was increased to 815℃, the climb/bypass mechanism controlled the creep process.

Key words:  wrought superalloy      creep mechanism      stacking fault      microtwin     
Received:  27 February 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00098     OR     https://www.ams.org.cn/EN/Y2013/V49/I7/863

[1] Zeng Y P, Liu J Q, Xie X S.  Acta Metall Sin, 2008; 44: 540

(曾燕屏, 刘建强, 谢锡善. 金属学报, 2008; 44: 540)
[2] Yang J, Dong J X, Jia J, Tao Y.  Acta Metall Sin, 2013; 49: 71
(杨建, 董建新, 贾建, 陶宇. 金属学报, 2013; 49: 71)
[3] Hardy M C, Shen G, Shankar R. In: Green K A, Pollock T M, Harada H eds.,Superalloys 2004. Warrendale, PA: The Minerals, Metals and Materials Society, 2004: 83
[4] Locq D, Caron P, Raujol S, Pettinari--Sturmel F, Coujou A. In: Green K A,Pollock T M, Harada H eds.,  Superalloys 2004. Warrendale, PA: The Minerals, Metals and Materials Society, 2004: 179
[5] Cui C Y, Sato A, Gu Y F, Harada H.  Metall Mater Trans, 2005; 36A: 2921
[6] Gu Y F, Harada H, Cui C Y, Ping D H, Sato A, Fujioka J.  Scr Mater, 2006; 55: 815
[7] Gu Y F, Cui C Y, Harada H, Fukuda T, Ping D H, Mitsuhashi A, Kato K, Kobayashi T,Fujioka J. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmnn M G, Huron E S,Woodard S A eds.,  Superalloys 2008. Warrendale, PA: The Minerals, Metals and Materials Society, 2008: 14
[8] Gu Y F, Cui C Y, Harada H, Fukuda T, Ping D H, Mitsuhashi A, Kato K, Kobayashi T,Fujioka J. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E,Portella P D, Telesman J eds.,  Superalloys 2012. Warrendale, PA: The Minerals, Metals and Materials Society, 2012: 903
[9] Wang Y, Sun F, Dong X P, Zhang L T, Shan A D.  Acta Metall Sin, 2010; 46: 334
(王衣, 孙峰, 董显平, 张澜庭, 单爱党. 金属学报, 2010; 46: 334)
[10] Gu Y F, Fukuda T, Cui C Y, Harada H, Mitsuhashi A, Yokokawa T, Fujioka J,Koizumi Y, Kobayashi T.  Metall Mater Trans, 2009; 40A: 3047
[11] Yuan Y, GuY F, Osada T, Zhong Z H, Yokokawa T, Harada H.  Scr Mater, 2012; 67: 137
[12] Zhong Z H, Gu Y F, Yuan Y, Cui C Y, Yokokawa T, Harada H.  Mater Sci Eng, 2012; A552: 464
[13] Cui C Y, Gu Y F, Ping D H, Harada H.  Metall Mater Trans, 2009; 40A: 282
[14] Cui C Y, Gu Y F, Ping D H, Harada H, Fukuda T.   Mater Sci Eng, 2008; A485: 651
[15] Yuan Y, Gu Y F, Cui C Y, Osada T, Zhong Z H, Tetsui T, Yokokawa T, Harada H.J Mater Res, 2011; 26: 2833
[16] Yang J X, Li J G, Wang M, Wang Y H, Jin T, Sun X F.  Acta Metall Sin, 2012; 48: 654
(杨金侠, 李金国, 王猛, 王彦辉, 金涛, 孙晓峰. 金属学报, 2012; 48: 654)
[17] Boussinot G, Finel A, Le Bouar Y.  Acta Mater, 2009; 57: 921
[18] Xiao X, Zhou L Z, Guo J T.  Acta Metall Sin, 2001; 37: 1159
(肖璇, 周兰章, 郭建亭. 金属学报, 2001; 37: 1159)
[19] Pope D P, Ezz S S.  Int Met Rev, 1984; 29: 136
[20] Decamps B, Morton A J, Condat M.  Philos Mag, 1991; 64A: 641
[21] Zhang Y, Tao N R, Lu K.  Scr Mater, 2009; 60: 211
[22] Condat M, Decamps B.  Scr Metall, 1987; 21: 607
[23] Zhang Z J, Zhang P, Li L L, Zhang Z F.  Acta Mater, 2012; 60: 3113
[24] Reppich B, Schepp P, Wehner G.  Acta Metall, 1982; 30: 95
[25] Yuan Y, Gu Y F, Zhong Z H, Osada T, Cui C Y, Tetsui T, Yokokawa T, Harada H.J Micros, 2012; 248: 34
[26] Yuan Y, Gu Y F, Cui C Y, Osada T, Tetsui T, Yokokawa T, Harada H.Mater Sci Eng, 2011; A528: 5106
[27] Viswanathan G B, Sarosi P M, Henry M F, Whitis D D, Milligan W W, Mills M J.  Acta Mater, 2005; 53: 3041
[28] Kovarik L, Unocic R R, Li J, Sarosi P, Shen C , Wang Y, Mills M J.  Prog Mater Sci, 2009; 54: 839
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[3] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[4] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[5] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[6] ZHANG Rui, LIU Peng, CUI Chuanyong, QU Jinglong, ZHANG Beijiang, DU Jinhui, ZHOU Yizhou, SUN Xiaofeng. Present Research Situation and Prospect of Hot Working of Cast & Wrought Superalloys for Aero-Engine Turbine Disk in China[J]. 金属学报, 2021, 57(10): 1215-1228.
[7] WANG Shihong, LI Jian, CHAI Feng, LUO Xiaobing, YANG Caifu, SU Hang. Influence of Solution Temperature on γε Transformation and Damping Capacity of Fe-19Mn Alloy[J]. 金属学报, 2020, 56(9): 1217-1226.
[8] ZHANG Yong, LI Xinxu, WEI Kang, WEI Jianhuan, WANG Tao, JIA Chonglin, LI Zhao, MA Zongqing. Element Segregation in GH4169 Superalloy Large-Scale Ingot and Billet Manufactured by Triple-Melting[J]. 金属学报, 2020, 56(8): 1123-1132.
[9] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[10] TAN Haibing, HUANG Shuo, WANG Jing, LI Shu, ZHU Changhong, ZHONG Yan, ZHONG Shilin, HE Aijie. Influence of White Spot Defects on Microstructure and Mechanical Property of the GH4586 Alloy[J]. 金属学报, 2020, 56(10): 1411-1422.
[11] DU Jinhui,LV Xudong,DONG Jianxin,SUN Wenru,BI Zhongnan,ZHAO Guangpu,DENG Qun,CUI Chuanyong,MA Huiping,ZHANG Beijiang. Research Progress of Wrought Superalloys in China[J]. 金属学报, 2019, 55(9): 1115-1132.
[12] Zongwei JI,Song LU,Hui YU,Qingmiao HU,Levente Vitos,Rui YANG. First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys[J]. 金属学报, 2019, 55(5): 673-682.
[13] Yong SU,Sugui TIAN,Huichen YU,Lili YU. DEFORMATION MECHANISMS OF Ni-BASED SINGLE CRYSTAL SUPERALLOYS DURING STEADY-STATE CREEP AT INTERMEDIATE TEMPERATURES[J]. 金属学报, 2015, 51(12): 1472-1480.
[14] AN Xianghai, WU Shiding, ZHANG Zhefeng. INFLUNECE OF STACKING FAULT ENERGY ON THE MICROSTRUCTURES, TENSILE AND FATIGUE PROPERTIES OF NANOSTRUCTURED Cu-Al ALLOYS[J]. 金属学报, 2014, 50(2): 191-201.
[15] XUE Peng, XIAO Bolü, MA Zongyi. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR PROCESSED ULTRAFINE-GRAINED AND NANOSTRUCTURED Cu-Al ALLOYS[J]. 金属学报, 2014, 50(2): 245-251.
No Suggested Reading articles found!