Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (9): 1115-1132    DOI: 10.11900/0412.1961.2019.00142
Overview Current Issue | Archive | Adv Search |
Research Progress of Wrought Superalloys in China
DU Jinhui1,LV Xudong1,2(),DONG Jianxin3,SUN Wenru4,BI Zhongnan1,2,ZHAO Guangpu1,DENG Qun1,CUI Chuanyong4,MA Huiping1,ZHANG Beijiang1
1. High-Temperature Materials Institute, Central Iron and Steel Research Institute, Beijing 100081, China
2. Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China
3. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
4. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

DU Jinhui,LV Xudong,DONG Jianxin,SUN Wenru,BI Zhongnan,ZHAO Guangpu,DENG Qun,CUI Chuanyong,MA Huiping,ZHANG Beijiang. Research Progress of Wrought Superalloys in China. Acta Metall Sin, 2019, 55(9): 1115-1132.

Download:  HTML  PDF(38676KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Wrought superalloys are high temperature alloys produced by casting-forging-hot rolling-cold drawing, including disc, plate, bar, wire, tape, pipe etc. These products are widely used in aviation, aerospace, energy, petrochemical, nuclear power and other industrial fields. In this paper, domestic progress of wrought superalloys in recent ten years was reviewed, including advances in fabrication process, research in new alloys (GH4169G, GH4169D, GH4065 and GH4068 alloy et al.) and new techniques (deforming of FGH4096 alloy, nitriding of NGH5011 alloy and 3D printing of In718 alloy et al.).

Key words:  wrought superalloy      melting      forging      inspection      3D printing     
Received:  05 May 2019     
ZTFLH:  TG132.2  
Fund: Supported by National Basic Research Program of China(2010CB631203);China Postdoctoral Science Foundation(2005037323)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00142     OR     https://www.ams.org.cn/EN/Y2019/V55/I9/1115

Fig.1  Comparisons before and after optimization of vacuum induction melting launder(a) removal ability of inclusions in square flow slots designed by steel works(b) removal ability of inclusions in self-designed square flume(c) residence time distribution (RTD) curves of square flume design in steel works(d) RTD curves of self-designed square flume
Fig.2  Schematic diagram of heat transfer in vacuum arc remelting
Fig.3  Distributions of primary dendrite arm spacing (PDAS) (a) and secondary dendrite arm spacing (SDAS) (b) of ingots (longitudinal section)
Diameter of ingot / mmRange of SDAS / μmAverage of SDAS / μmK
40680~160116.31.410
50898~161132.21.618
Table 1  Comparisons of the SDAS and Ti element segregation coefficient (K) of different ingot center longitudinal section
Fig.4  Longitudinal section microstructures of centers of GH4720Li ingots(a1~a3) diameter 406 mm ingot (b1~b3) diameter 508 mm ingot
TreatmentMass fraction of Ti in dendrite arm / %Mass fraction of Ti in interdendritic / %K
Before homogeneous3.986.371.601
Schedule 14.715.121.087
Schedule 24.645.251.131
Schedule 34.794.861.015
Table 2  Comparisons of K for Ti element after different homogenization schedules
Fig.5  Simulation of cogging of GH4720Li alloy
Fig.6  Simulation of radial forging of GH4720Li alloy
Fig.7  Photo of the supersize GH4706 alloy turbine disc with a diameter 2100 mm
Fig.8  Measurement penetration vs spatial resolution for various residual stress measurement methods[31]
Fig.9  Relationship between γ" variant selection and grain orientation after thermo-mechanical coupling experiment in GH4169 alloy[33](a) EBSD figure of grain orientation (b) [001] grain orientation (c) [111] grain orientation (d) [101] grain orientation
Fig.10  C-scan images of the turbine disk(a) C-scan of clutter distribution (b) time of flight (TOF) of clutter distribution (c) C-scan of bottom echo distribution

Sample No.

Condition

Clutter amplitude

Bottom wave range before changeBottom wave range after changeBottom wave lowered range
1#Rolling state≤10%83%83%0%
3#990 ℃ solution≤10%-68%15%
4#1020 ℃ solution≤10%-52%31%
5#1050 ℃ solution≤10%-38%47%
Table 3  Comparisons of local ultrasonic clutter and bottom echo loss of different heat treatment temperature samples[37,38,39]
Fig.11  The microstructures of GH4169D (a) and GH4169 (b) alloys after standard heat treatment[42]
AlloyCoCrWMoAlTiNbFeNiRef.
GH406513.0016.004.004.002.103.700.701.00Bal.[46]
GH474210.4014.15-5.032.512.562.620.53Bal.[47]
GH4169G-18.77-3.120.481.055.20Bal.52.65[48]
FGH409612.9616.014.014.022.213.750.750.20Bal.[49]
GH428210.0020.00-8.501.502.10--Bal.[50]
GH414111.0019.00-10.001.503.10--Bal.[50]
GH473813.5019.00-4.301.503.00--Bal.[51]
GH458611.6818.093.058.111.653.31--Bal.[52]
GH4720Li14.9616.031.232.982.535.01--Bal.[52]
GH497515.587.9610.221.185.012.491.660.10Bal.[52]
GH41691.0019.00-3.000.501.105.20Bal.53.00[52]
Table 4  Chemical compositions of high performance disc superalloys[46,47,48,49,50,51,52] (mass fraction / %)
Fig.12  TEM image of an aged reinforced cobalt-based alloy annealed at 900 ℃ for 72 h[60] (a) dark field image(b) selected area electron diffraction pattern
Fig.13  Chemical composite design of GH4068 alloy[59]
Fig.14  Deformation mechanism of GH4068 alloy under different creep conditions[65]
Fig.15  Deformation microstructures of GH4068 alloy at intermediate temperature creep[65](a) 725 ℃, 480 MPa (b) 725 ℃, 630 MPa
Fig.16  Central macrostructure of low-magnification in electroslag remelting continuous directional solidification ingots (diameter 270 mm) of FGH4096 alloy[68]
Fig.17  Microstructures at R/2 region in directional solidification ingots of FGH4096 alloy (R—radius of ingot)[68](a) primary dendrite (b) secondary dendrite
Fig.18  Longitudinal section microstructures of isothermal forging turbine discs of FGH4096 alloy (diameter 630 mm)[68]

Alloy and condition

Room temperature tensile1100 ℃ tensile1100 ℃, 30 MPa endurance life / h
σb / MPaδ / %σb / MPaδ / %
NGH5011+pretreatment96117.014120.568
NGH50118907.511514.059
GH323083456.57695.06
GH353686647.070 (extrapolation)--
MGH956 thick66015.0947.0>1000
MGH956 thin76815.0837.050
Table 5  Comparisons of mechanical properties of various alloys[60]
Fig.19  Gas turbine discs (diameter 150 mm) (a) and integral blade rings (diameter 220 mm) (b) fabricated by additive manufacturing of In718 alloy

Sample and standard

Room temperature tensile650 ℃ tensile
σs / MPaσb / MPaδ / %ψ / %σs / MPaσb / MPaδ / %ψ / %

Anatomical part

1266144817.530107011901228
1265144417.533108012001322
Forging standard≥1140≥1340≥12.0≥15≥930≥1100≥12≥15
Table 6  Mechanical properties of gas turbine discs fabricated by additive manufacturing of In718 alloy
[1] ZhongZ Y, ShiC X. Fourty years progress of superalloy in China [A]. Fourty Years of Superalloy in China [C]. Beijing: Metallurgical Industry Press, 1996: 3
[1] 仲增墉, 师昌绪. 中国高温合金四十年发展历程 [A]. 中国高温合金四十年 [C]. 北京: 冶金工业出版社, 1996: 3)
[2] ZhuangJ Y, DuJ H, DengQ, , et al. Wrought Superalloy GH4169 [M]. Beijing: Metallurgical Industry Press, 2006: 1
[2] 庄景云, 杜金辉, 邓 群等. 变形高温合金GH4169 [M]. 北京: 冶金工业出版社, 2006: 1)
[3] ZhuangJ Y, DengQ, DuJ H, , et al. Forging Process of Wrought Superalloy GH4169 [M]. Beijing: Metallurgical Industry Press, 2008: 15
[3] 庄景云, 邓 群, 杜金辉等. 变形高温合金GH4169锻造工艺 [M]. 北京: 冶金工业出版社, 2008: 15)
[4] TianS S, JinX, WangJ Z, , et al. Nearly a decade years development of wrought superalloy in China [A]. Fifty Years of Superalloy in China [C]. Beijing: Metallurgical Industry Press, 2006: 52
[4] 田树森, 金 鑫, 王剑志等. 我国变形高温合金生产技术近十年的发展[A]. 中国高温合金五十年 [C]. 北京: 冶金工业出版社, 2006: 52)
[5] QuX H, ZhangG Q, ZhangL. Applications of powder metallurgy technologies in aero-engines [J]. J. Aeronaut. Mater., 2014, 34(1): 1
[5] 曲选辉, 张国庆, 章 林. 粉末冶金技术在航空发动机中的应用 [J]. 航空材料学报, 2014, 34(1): 1)
[6] DuJ H, LuX D, DengQ, , et al. Progress in GH4169 alloy development [J]. Mater. China, 2012, 31(12): 12
[6] 杜金辉, 吕旭东, 邓 群等. GH4169合金研制进展 [J]. 中国材料进展, 2012, 31(12): 12)
[7] DuJ H, DengQ, DongJ X. Development and application of GH4169 alloy in China[A].Fifty Years of Superalloy in China [C]. Beijing: Metallurgical Industry Press, 2006: 66
[7] 杜金辉, 邓 群, 董建新. 我国GH4169合金的发展与应用 [A]. 中国高温合金五十年 [C]. 北京: 冶金工业出版社, 2006: 66)
[8] DuJ H, LuX D, DengQ, , et al. Progress in the research and manufacture of GH4169 alloy [J]. J.Iron Steel Res. Int., 2015, 22: 657
[9] DuJ H, DengQ, DongJ X, , et al. Recent progress of manufacturing technologies on C&W superalloys in China [A].8th International Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh, PA: The Minerals, Metals & Materials Society, 2014: 33
[10] LuX D, DuJ H, DengQ. High temperature structure stability of GH4169 superalloy [J]. Mater. Sci. Eng., 2013, A559: 623
[11] DuJ H, LuX D, DengQ, , et al. High-temperature structure stability and mechanical properties of novel 718 superalloy [J]. Mater. Sci. Eng., 2007, A452-453: 584
[12] HeaslipL J, McLeanA, SommervilleI D. Chemical and Physical Interactions During Transfer Operations [M]. Pittsburgh, PA: Iron and Steel Society, 1983: 1
[13] MoralesR D, Díaz-CruzM, Palfox‐RamosJ, , et al. Modelling steel flow in a three-strand billet tundish using a turbulence inhibitor [J]. Steel Res., 2001, 72: 11
[14] MatsumotoK, HoshijimaY, IshikuraK, , et al. Proceeding of sixth international iron and steel congress [C]. Iron Steel Inst. Jpn Publ., 1990, 3: 222
[15] HsiaoT C, KjellbergG. Fluid flow in ladles-experimental results [J]. Scand J. Metall., 1980, (9): 105
[16] BryantD J, McintoshG. The manufacture and evaluation of a large turbine disc in cast and wrought alloy 720Li [A].Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 713
[17] FurrerD U, FechtH J. γ' formation in superalloy U720LI [J]. Scr. Mater., 1999, 40: 1215
[18] JacksonM P, ReedR C. Heat treatment of UDIMET 720Li: The effect of microstructure on properties [J]. Mater. Sci. Eng., 1999, A259: 85
[19] RadisR, SchafferM, AlbuM, , et al. Evolution of size and morphology of γ′ precipitates in UDIMET720Li during continuous cooling [A]. Superalloy 2008 [C]. Warrendale, PA: TMS, 2008: 829
[20] ZhaoG P, ZhangB J, HuangS, , et al. Optimizing and implementing the manufacturing technology of GH4706 alloy super large turbine disk for heavy gas turbine [A]. Papers Collection of the Thirteenth Annual Meeting of China Superalloy [C]. Beijing: Academic Committee of the Superalloys, CSM, 2015: 4
[20] 赵光普, 张北江, 黄 烁等. 重型燃机GH4706合金超大型涡轮盘制备工艺的优化与实施[A]. 第十三届中国高温合金年会摘要文集 [C]. 北京: 中国金属学会高温材料分会, 2015: 4)
[21] SchilkeP W, SchwantR C. Alloy 706 use, process optimization, and future directions for GE gas turbine rotor materials [A].Superalloys 718, 625, 706 and Various Derivatives [C]. Warrendale, PA: TMS, 2001: 25
[22] SchilkeP W, PepeJ J, SchwantR C. Alloy 706 metallurgy and turbine wheel application[A]. Superalloys 718, 625, 706 and Various Derivatives [C].Warrendale, PA: TMS, 1994: 1
[23] ZhangB J, ZhaoG P, XuG H, , et al. Investigation of die-forging process of large GH4698 turbine disk for gas turbine [A]. High Temperature Structural Materials for Power and Energy—Proceedings of the 11th Annual Conference of China Superalloys [C]. Shanghai: China Metal Society, 2007: 5
[23] 张北江, 赵光普, 胥国华等. 燃气轮机用GH4698合金大尺寸涡轮盘模锻工艺研究 [A].动力与能源用高温结构材料——第十一届中国高温合金年会论文集 [C]. 上海: 中国金属学会, 2007: 5)
[24] MaT J, JinX, ZhaoY C, , et al. A new technology for development of ?2000 mm extra-large turbine disk made of superalloy [J]. Baosteel Technol., 2005, (5): 50
[24] 马天军, 金 鑫, 赵玉才等. 研制直径2000 mm超大型高温合金涡轮盘的新技术 [J]. 宝钢技术, 2005, (5): 50)
[25] YaoZ H, LiL H, ZhangM C, , et al. Research on large-scale turbine disk of wrought GH4738 superalloy using microstructure evolution precision control models combined with integrated simulation methods [A].Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives [C]. Hoboken, NJ, USA: TMS, 2014
[26] ZhangB J, QinH Y, ZhaoG P, , et al. Research on thermal processing of large superalloy turbine disk forgings [A].Chinese Special Steel Annual Conference 2005 [C]. Beijing: China Metal Society, 2005: 6
[26] 张北江, 秦鹤勇, 赵光普等. 大型高温合金涡轮盘锻件热加工工艺研究 [A].中国特殊钢年会2005论文集 [C]. 北京: 中国金属学会, 2005: 6)
[27] HuangS, WangL, ZhangB J, , et al. Hot deformation behavior and microstructure evolution of GH4706 alloy [J]. J. Mater.Eng., 2015, 43(2): 41
[27] 黄 烁, 王 磊, 张北江等. GH4706合金的热变形行为与显微组织演化 [J]. 材料工程, 2015, 43(2): 41)
[28] HuangS, WangL, ZhangB J, , et al. Dynamic recrystallization behavior and grain size control of GH4706 superalloy [J]. Chin. J. Mater. Res., 2014, 28: 362
[28] 黄 烁, 王 磊, 张北江等. GH4706合金的动态再结晶与晶粒控制 [J]. 材料研究学报, 2014, 28: 362
[29] HuangS, ZhangB J, ZhangW Y, , et al. The abnormal dynamic recrystallization behavior of a large alloy 706 disc [A]. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications [M]. Cham: Springer, 2018: 1013
[30] HuangS. Microstructure control and mechanical properties optimization of GH4706 wrought superalloy [D]. Shenyang: Northeastern University, 2015
[30] 黄 烁. 变形高温合金GH4706组织控制与力学性能优化 [D]. 沈阳: 东北大学, 2015
[31] BiZ N, QinH L, DongZ G, , et al. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
[31] 毕中南, 秦海龙, 董志国等. 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160
[32] GengL, NaY S, ParkN K. Continuous cooling transformation behavior of alloy 718 [J]. Mater. Lett., 1997, 30: 401
[33] QinH L, BiZ N, YuH Y, , et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy [J]. Mater. Sci. Eng., 2018, A728: 183
[34] FanX Y, LuoS M, LiZ. Display and analysis of strip bottom loss in ultrasound detection of a superalloy disk [A]. Southwest 10th NDT Symposium [C]. Guiyang: Professional Committee of Nondestructive Testing of Guizhou Institute of Mechanical Engineering, 2009: 6
[34] 范兴义, 罗顺明, 李 泽. 某高温合金盘件超声检测中条状底损显示分析[A]. 西南地区第十届NDT学术交流会论文集 [C]. 贵阳: 贵州省机械工程学会无损检测专业委员会:2009: 6)
[35] FanX Y, LuoS M, LiZ, , et al. GH761 disk ultrasound detection strip bottom loss display analysis [A].Pan-Pearl River Delta Forging Annual Conference [C]. Anshun: Chinese Mechanical Engineering Society, 2008: 40
[35] 范兴义, 罗顺明, 李 泽等. GH761盘件超声检测中条状底损显示分析 [A].2008泛珠三角锻压年会论文集 [C]. 安顺: 中国机械工程学会, 2008: 40)
[36] LinS Q, ZhouX J, MoJ Q. Image processing and emulation of ultrasonic C-scan image [J]. Nondestr. Test., 1997, 19: 301
[36] 林时钱, 周晓军, 莫锦秋. 超声C扫描图象处理和仿真研究 [J]. 无损检测, 1997, 19: 301
[37] LiJ W, XuY L, WangZ Y, , et al. Study on ultrasonic imaging with bottom echo [J]. Nondestr. Test., 2005, 27: 457
[37] 李建文, 徐彦霖, 王增勇等. 超声底波成像方法研究 [J]. 无损检测, 2005, 27: 457
[38] ZhangL G, WuW, OuyangX Q. Ultrasonic testing analysis of 304 stainless steel crystal grain diffusion properties [J]. Nondestr. Test., 2010, 32: 99
[38] 张路根, 吴 伟, 欧阳小琴. 304不锈钢晶粒散射特性的超声检测分析 [J]. 无损检测, 2010, 32: 99
[39] WanJ. The research on the relationship between microstructure and ultrasonic testing parameters of GH706 alloy [D]. Nanchang: Nanchang Hangkong University, 2016
[39] 万 江. GH706合金组织与超声检测参数关系研究 [D]. 南昌: 南昌航空大学, 2016
[40] PengL. A study of deleterious influences of trace dopants in Ni-based single crystal superalloys on the basis of ECO-degsin idea [D]. Changsha: Hunan University, 2012
[40] 彭 黎. 基于生态设计理念的镍基单晶高温合金中迹量掺杂元素的危害作用分析 [D]. 长沙: 湖南大学, 2012
[41] WangQ Z, ChenG S, SunW R. Research on the GH4169G alloy for aerospace turbine disks [J]. Baosteel Technol., 2013, (2): 37
[41] 王庆增, 陈国胜, 孙文儒. 航空涡轮盘用GH4169G合金研制 [J]. 宝钢技术, 2013, (2): 37)
[42] WangM Q, DengQ, DuJ H, , et al. The development of ATI 718Plus alloy research in China [J]. Rare Met. Mater. Eng., 2016, 45: 3335
[42] 王民庆, 邓 群, 杜金辉等. ATI 718Plus合金国内研究进展 [J]. 稀有金属材料与工程, 2016, 45: 3335
[43] XieX S, WangG L, DongJ X, , et al. Structure stability study on a newly developed nickel-base superalloy—allvac@ 718plusTM [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warrendale, PA: TMS, 2005: 179
[44] WangM Q, DengQ, DuJ H, , et al. The effect of aluminum on microstructure and mechanical properties of ATI 718Plus alloy [J]. Mater. Trans., 2015, 56: 635
[45] PickeringE J, MathurH, BhowmikA, , et al. Grain-boundary precipitation in allvac 718Plus [J]. Acta Mater., 2012, 60: 2757
[46] ZhangB J, ZhaoG P, ZhangW Y, , et al. Investigation of high performance disc alloy GH4065 and associated advanced processing techniques [J]. Acta Metall. Sin., 2015, 51: 1227
[46] 张北江, 赵光普, 张文云等. 高性能涡轮盘材料GH4065及其先进制备技术研究 [J]. 金属学报, 2015, 51: 1227
[47] WangL T, WuG L, WangJ H, , et al. Development on solid forging of GH742 alloy [J]. J. Iron Steel Res., 2003, 15(7): 14
[47] 王林涛, 吴贵林, 王继红等. GH742合金整体锻件的研制 [J]. 钢铁研究学报, 2003, 15(7): 14)
[48] HuangL J. Superplastic forming mechanism of GH4169G superalloy [D]. Beijing: University of Chinese Academy of Sciences, 2016
[48] 黄林杰. GH4169G高温合金的超塑性变形机制研究 [D]. 北京: 中国科学院大学, 2016
[49] FangB, JiZ, LiuM, , et al. Study on constitutive relationships and processing maps for FGH96 alloy during two-pass hot deformation [J]. Mater. Sci. Eng., 2014, A590: 255
[50] PikeL M. Development of a fabricable gamma-prime (γ') strengthened superalloy [A].Superalloy 2008 [C]. Warrendale, PA: TMS, 2008: 191
[51] RoweM D. Ranking the resistance of wrought superalloys to strain-age cracking [J]. Weld. J., 2006, 85: 27S
[52] High Temperature Branch of China Metal Society. China Superalloys Handbook [M]. Beijing: China Quality Inspection Press, China Standard Press, 2012: 1
[52] (中国金属学会高温材料分会. 中国高温合金手册 [M]. 北京: 中国质检出版社, 中国标准出版社, 2012: 1)
[53] RobsonJ D. Modeling competitive continuous and discontinuous precipitation [J]. Acta Mater., 2013, 61: 7781
[54] LaurenceA, CormierJ, VillechaiseT, , et al. Impact of the solution cooling rate and of thermal aging on the creep properties of the new cast & wrought René 65 Ni-based superalloy [A]. 8thInternational Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh, PA: TMS, 2014: 297
[55] HeaneyJ A, LasondeM L, PowellA M, , et al. Development of a new cast and wrought alloy (René 65) for high temperature disk applications [A]. 8th International Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh, PA: TMS, 2014: 67
[56] WojcikT, RathM, KozeschnikE. Characterisation of secondary phases in Ni-base superalloy René 65 [J]. Mater. Sci. Technol., 2018, 34: 1558
[57] ZhangB J, ZhaoG P, XuG H, , et al. Hot deformation behavior and microstructure evolution of superalloy GH742 [J]. Acta Metall. Sin., 2005, 41: 1207
[57] 张北江, 赵光普, 胥国华等. GH742合金热变形行为与微观组织演化 [J]. 金属学报, 2005, 41: 1207
[58] ValitovV A. Formation of nanocrystalline structure upon severe thermomechanical processing and its effect on the superplastic properties of nickel base alloys [A]. 8th International Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh, PA: TMS, 2014: 665
[59] GuY F, CuiC Y, YuanY, , et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications [J]. Acta Metall. Sin., 2015, 51: 1191
[59] 谷月峰, 崔传勇, 袁 勇等. 一种高性能航空涡轮盘用铸锻合金的研究进展 [J]. 金属学报, 2015, 51: 1191
[60] SatoJ, OmoriT, OikawaK, , et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
[61] BauerA, NeumeierS, PyczakF, , et al. Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants [J]. Scr. Mater., 2010, 63: 1197
[62] GuY, HaradaH, CuiC, , et al. New Ni-Co-base disk superalloys with higher strength and creep resistance [J]. Scr. Mater., 2006, 55: 815
[63] GuY F, CuiC, HaradaH, , et al. Development of Ni-Co base alloys for high-temperature disk applications [A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 53
[64] XuL, CuiC Y, SunX F. The effects of Co and Ti additions on microstructures and compressive strength of Udimet710 [J]. Mater. Sci. Eng., 2011, A528: 7851
[65] XuL, ChuZ K, CuiC Y, , et al. Creep mechanism of a Ni-Co base wrought superalloy [J]. Acta Metall. Sin., 2013, 49: 863
[65] 徐 玲, 储昭贶, 崔传勇等. 一种镍钴基变形高温合金蠕变变形机制的研究 [J]. 金属学报, 2013, 49: 863
[66] LiF, FuR, FengD, , et al. Microstructure evolution during hot deformation of as cast ESR-CDSed superalloy René88DT [J]. Mater. Res. Innovations, 2014, 18(S4): 421
[67] LiF L, FuR, FengD, , et al. Hot workability characteristics of René88DT superalloy with directionally solidified microstructure [J]. Rare Met., 2015, 34: 51
[68] YinF J, FuR, LiF L, , et al. Research on novel cast and wrought superalloy FGH4096 for aircraft turbine disk applications [J]. J. Iron Steel Res., 2018, 30: 32
[68] (尹法杰, 付 锐, 李福林等, 新型铸&锻FGH4096合金涡轮盘研究 [J]. 钢铁研究学报,2018, 30: 32
[69] LiF L, FuR, FengD, , et al. Hot deformation characteristics of Ni-base wrought superalloy CDS&W FGH96 [J]. Chin. J. Rare Met., 2015, 39: 201
[69] 李福林, 付 锐, 冯 涤等. 镍基变形高温合金CDS&W FGH96热变形行为研究 [J]. 稀有金属, 2015, 39: 201
[70] FuR, LiF L, YinF J, , et al. Microstructure evolution and deformation mechanisms of the electroslag refined-continuous directionally solidified (ESR-CDS?) superalloy René88DT during isothermal compression [J]. Mater. Sci. Eng., 2015, A638: 152
[71] Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook [M]. 2nd Ed., Beijing: China Standard Press, 2002: 5
[71] (《中国航空材料手册》编辑委员会. 中国航空材料手册 [M]. 第2版, 北京: 中国标准出版社, 2002: 5)
[72] LiS H, TianY, YangZ, , et al. Property characteristics and application prospects of oxide dispersion strengthened MGH956 alloy sheet [J]. J. Iron Steel Res., 2011, 23(S2): 533
[72] 李帅华, 田 耘, 杨 峥等. 氧化物弥散强化MGH956合金板材的性能特点及应用前景 [J]. 钢铁研究学报, 2011, 23(S2): 533)
[73] SimsC T, StoloffN S, HagelW C, translated by ZhaoJ. Superalloys II [M]. Dalian: Dalian University of Technology Press, 1992:18
[73] (SimsC T, StoloffN S, Hagel W C著, 赵 杰译. 高温合金 [M]. 大连: 大连理工大学出版社, 1992: 18)
[74] Kablov Е Н. Aviation materials science: Results and prospects [J]. Vest. Ross. Akad. Nauk, 2002, 72: 3
[75] KindlimannL E, AnsellG S. Dispersion strengthening austenitic stainless steels by nitriding [J]. Metall. Mater. Trans., 1970, 1B: 507
[76] PetrovaL G. High-temperature nitriding of refractory alloys [J]. Met. Sci. Heat Treat., 2004, 46: 18
[77] PetrovaL G. Improvement in the high-temperature strength of alloys based on cobalt by internal nitriding [J]. Met. Sci. Heat Treat., 1994, 36: 619
[78] PetrovaL G. Internal nitriding of high-temperature steels and alloys [J]. Met. Sci. Heat Treat., 2001, 43: 11
[79] PetrovaL G, ChudinaO V. Evaluation of dispersion hardening by various coherent nitrides in nitriding alloys based on iron, nickel, and cobalt [J]. Met. Sci. Heat Treat., 1999, 41: 238
[80] PetrovaL G. Modeling the nitriding kinetics of multicomponent alloys [J]. Met. Sci. Heat Treat., 2002, 44: 431
[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[4] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[5] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[6] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[7] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[8] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[9] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[10] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[11] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[12] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[13] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[14] YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2022, 58(9): 1108-1117.
[15] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
No Suggested Reading articles found!