Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (8): 1123-1132    DOI: 10.11900/0412.1961.2020.00101
Current Issue | Archive | Adv Search |
Element Segregation in GH4169 Superalloy Large-Scale Ingot and Billet Manufactured by Triple-Melting
ZHANG Yong1, LI Xinxu1, WEI Kang1, WEI Jianhuan1, WANG Tao1, JIA Chonglin1, LI Zhao1, MA Zongqing2()
1 Key Laboratory of Science and Technology on Advanced High Temperature Structural Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
Download:  HTML  PDF(2848KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

GH4169 has the advantage of excellent comprehensive mechanical properties, good oxidation and corrosion resistance, etc., which have been widely used in aero engine with the largest consumption. The GH4169 parts include high pressure compressor disk, turbine disk, shaft, gearbox and forged blade, et al. With the development of technology and the requirement of cost reducing, the size of GH4169 ingot and billet increases gradually at home and abroad. However, element segregation becomes more and more severe as the size of GH4169 ingot and billet increases, which will significantly degrade their mechanical properties. In this work, the large-scale GH4169 superalloy ingot (diameter 508 mm) was prepared by triple smelting, vacuum induction melting (VIM)+electro sag remelting (ESR)+vacuum arc remelting (VAR). Then, large-scale GH4169 billet (diameter 240 mm) was obtained from this prepared ingot via two-step high temperature homogenization heat treatment and cogging-forging. The element composition and microstructure at different positions of these large-scale ingot and billet were analyzed by SEM, TEM, EPMA and EDS. The results show that the segregation degree of element Al in GH4169 ingot is small, while those of elements Nb, Ti and Mo are large. Moreover, a lot of secondary phases were precipitated at the interdendritic regions of GH4169 ingot, including MC, Laves and δ phase. In the GH4169 billet prepared in our work, no "freckle" or "white spot" macro segregation was recognized, and the micro-element segregation was eliminated. Furthermore, combined with computational simulation, the chemical composition uniformity and main mechanical properties of GH4169 and Inconel 718 billets were compared. The statistical analysis using sample variance of macro chemical composition shows that the uniformity of chemical composition in GH4169 billet produced by different manufactures is different. The regional element segregation results in some vacillation on the mechanical properties of GH4169 billet. It is proposed that this regional element segregation can be further depressed by elaborately controlling the triple melting process and optimizing the homogenization heat treatment and forging process.

Key words:  GH4169      triple smelting      wrought superalloy      element segregation     
Received:  28 March 2020     
ZTFLH:  TG113.12  
Fund: National Natural Science Foundation of China(51822404);GH4169 Superalloy 319 Special Item of Defense Science and Industry Bureua(XXZX-16-00X);Science and Technology Program of Tianjin(18YFZCGX00070)
Corresponding Authors:  MA Zongqing     E-mail:  zqma@tju.edu.cn

Cite this article: 

ZHANG Yong, LI Xinxu, WEI Kang, WEI Jianhuan, WANG Tao, JIA Chonglin, LI Zhao, MA Zongqing. Element Segregation in GH4169 Superalloy Large-Scale Ingot and Billet Manufactured by Triple-Melting. Acta Metall Sin, 2020, 56(8): 1123-1132.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00101     OR     https://www.ams.org.cn/EN/Y2020/V56/I8/1123

AlloyCMoCrNbAlTiCoNiPSiSFe
GH41690.0272.9617.845.380.541.01<0.153.60.00990.0630.0004Bal.
Inconel 7180.0272.9818.045.400.541.020.3753.50.00790.0610.0003Bal.
Table 1  Main chemical compositions of triple smelted GH4169 and Inconel 718 alloys
Fig.1  SEM images of dendrite structures in different locations of GH4169 vacuum arc remelting (VAR) ingot
(a) edge (b) R/2 (R refer to the VAR ingot radius 254 mm) (c) center
Position of ingotRegionAlTiNbMo
Edge

Interdendritic region

Dendritic arm

0.457

0.491

1.249

0.910

6.082

3.376

3.160

2.768

R/2

Interdendritic region

Dendritic arm

0.477

0.513

1.256

0.846

6.442

2.870

2.964

2.545

Center

Interdendritic region

Dendritic arm

0.452

0.526

1.329

0.752

6.639

2.494

3.110

2.501

Table 2  Element distributions in different locations of VAR ingot of GH4169 alloy
Position of ingotAlTiNbMo
Edge1.0740.7290.5550.876
R/21.0750.6740.4460.857
Center1.1640.5660.3760.804
Table 3  Segregation coefficients (k) of elements in different locations of VAR ingot of GH4169 alloy
Fig.2  EPMA (a) and SEM (b) images of precipitated phase at center in VAR ingot of GH4169 alloy
Phase typeAlTiCrNbNiMoFeC
Carbide-4.9941.04387.6172.5271.5790.5239.730
Laves phase0.1400.81214.90630.15134.10712.63014.0650.247
δ phase0.2721.90511.65115.97258.5702.34411.214-
Table 4  Chemical compositions of precipitated phase in VAR ingot of GH4169
Fig.3  SEM image and element distributions at center in VAR ingot of GH4169 alloy
Color online
Fig.4  Calculated distributions of typical elements Nb (a), Mo (b), Al (c) and Ti (d) in VAR ingot of GH4169 alloy
Color online
Fig.5  Calculated distributions of elements Nb (a), Mo (b), Al (c) and Ti (d) in VAR ingot of GH4169 alloy after homogenization heat treatment
Fig.6  TEM images of GH4169 billet
(a) TEM image of grain boundary and second phase
(b) HRTEM image of strengthening phase γ'' and matrx γ
(c) SAED pattern of matrix, γ' and γ''
Fig.7  Distributions of typical elements Nb, Mo, Al, Ti and Cr in GH4169 billet
Color online
Fig.8  SEM images of GH4169 billet at different locations
(a) edge (b) R/2 (c) center
Position of billetAlTiMoNbNiCrFe
Edge0.4531.0892.7584.87554.39318.79819.266
0.4271.0442.8014.77854.65818.79619.508
0.4111.0512.8034.77154.32518.79619.421
Average value0.4301.0612.7874.80854.45918.79719.398
R/20.4401.0942.7404.97553.96219.17219.298
0.5021.1222.7424.83553.87719.22519.312
0.4881.1092.7164.87054.17819.09819.268
Average value0.4771.1082.7334.89354.00619.16519.293
Center0.4821.1653.0085.02954.51518.81819.203
0.4441.1473.0245.19154.48318.78118.964
0.4521.1492.9415.13354.44218.95719.115
Average value0.4591.1542.9915.11854.48018.85219.094
Table 5  Element distributions at different locations in GH4169 billet through EPMA
Fig.9  Element testing method at different locations in billet cross section (a) and the calculated results of standard deviation for GH4169 and Inconel 718 billets (b)
Fig.10  Brinell hardnesses at different locations of GH4169 and Inconel 718 billets
[1] Chen Y, Guo Y B, Xu M J, et al. Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and gaussian distribution laser [J]. Mater. Sci. Eng., 2019, A754: 339
[2] Farber B, Small K A, Allen C, et al. Correlation of mechanical properties to microstructure in Inconel 718 fabricated by direct metal laser sintering [J]. Mater. Sci. Eng., 2018, A712: 539
[3] Wu J, Li C, Liu Y C, et al. Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy [J]. Mater. Sci. Eng., 2019, A743: 623
[4] Zhang H J, Li C, Guo Q Y, et al. Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants [J]. Scr. Mater., 2019, 164: 66
doi: 10.1016/j.scriptamat.2019.01.041
[5] Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718 [J]. Addit. Manuf., 2019, 30: 100877
[6] Zhang X, Li H W, Zhan M, et al. Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations [J]. J. Mater. Sci. Technol., 2020, 36: 79
doi: 10.1016/j.jmst.2019.08.008
[7] Luo J T, Yu W L, Xi C Y, et al. Preparation of ultrafine-grained GH4169 superalloy by high-pressure torsion and analysis of grain refinement mechanism [J]. J. Alloys Compd., 2019, 777: 157
doi: 10.1016/j.jallcom.2018.10.385
[8] Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
doi: 10.11900/0412.1961.2016.00290
(刘永长, 郭倩颖, 李 冲等. Inconel 718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259)
doi: 10.11900/0412.1961.2016.00290
[9] Bi Z N, Qin H L, Dong Z G, et al. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
doi: 10.11900/0412.1961.2019.00089
(毕中南, 秦海龙, 董志国等. 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160)
doi: 10.11900/0412.1961.2019.00089
[10] Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
(刘永长, 张宏军, 郭倩颖等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653)
doi: 10.11900/0412.1961.2018.00340
[11] Yu K O, Domingue J A, Maurer G E, et al. Macrosegregation in ESR and VAR processes [J]. JOM, 1986, 38(1): 46
[12] Gribbin S, Ghorbanpour S, Ferreri N C, et al. Role of grain structure, grain boundaries, crystallographic texture, precipitates, and porosity on fatigue behavior of Inconel 718 at room and elevated temperatures [J]. Mater. Charact., 2019, 149: 184
doi: 10.1016/j.matchar.2019.01.028
[13] Holland S, Wang X Q, Chen J, et al. Multiscale characterization of microstructures and mechanical properties of Inconel 718 fabricated by selective laser melting [J]. J. Alloys Compd., 2019, 784: 182
doi: 10.1016/j.jallcom.2018.12.380
[14] Wang Z X, Huang S, Zhang B J, et al. Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy [J]. Acta Metall. Sin., 2019, 55: 417
doi: 10.11900/0412.1961.2018.00218
(王资兴, 黄 烁, 张北江等. 高合金化GH4065镍基变形高温合金点状偏析研究 [J]. 金属学报, 2019, 55: 417)
doi: 10.11900/0412.1961.2018.00218
[15] Rist M A, James J A, Tin S, et al. Residual stresses in a quenched superalloy turbine disc: Measurements and modeling [J]. Metall. Mater. Trans., 2006, 37A: 459
[16] Sidorov V V, Min P G. Refining a complex nickel alloy to remove a sulfur impurity during vacuum induction melting: Part I [J]. Russ. Metall., 2014, (12): 982
[17] Wen D X, Lin Y C, Li X H, et al. Hot deformation characteristics and dislocation substructure evolution of a nickel-base alloy considering effects of δ phase [J]. J. Alloys Compd., 2018, 764: 1008
doi: 10.1016/j.jallcom.2018.06.146
[18] Zhang H J, Li C, Liu Y C, et al. Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy [J]. Mater. Sci. Eng., 2016, A677: 515
[19] Mei Y P, Liu Y C, Liu C X, et al. Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718 [J]. Mater. Des., 2016, 89: 964
doi: 10.1016/j.matdes.2015.10.082
[20] Zhuang J Y, Du J H, Deng Q, et al. Superalloy GH4169 [M]. Beijing: Metallurgy Industry Press, 2006: 44
(庄锦云, 杜金辉, 邓 群等. 变形高温合金GH4169 [M]. 北京: 冶金工业出版社, 2006: 44)
[21] Wang H P, Lü P, Cai X, et al. Rapid solidification kinetics and mechanical property characteristics of Ni-Zr eutectic alloys processed under electromagnetic levitation state [J]. Mater. Sci. Eng., 2020, A772: 138660
[22] Drexler A, Oberwinkler B, Primig S, et al. Experimental and numerical investigations of the γ'' and γ' precipitation kinetics in Alloy 718 [J]. Mater. Sci. Eng., 2018, A723: 314
[23] Geddes B, Leno H, Huang X. Superalloys: Alloying and Performance [M]. Materials Park, Ohio: ASM International, 2010: 9
[24] Wang F, Xu W L, Ma D X, et al. Co-growing mechanism of γ/γ' eutectic on MC-type carbide in Ni-based single crystal superalloys [J]. J. Alloys Compd., 2019, 792: 505
doi: 10.1016/j.jallcom.2019.04.067
[25] Wu J, Liu Y C, Li C, et al. Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents [J]. Acta Metall. Sin., 2020, 56: 21
(吴 静, 刘永长, 李 冲等. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展 [J]. 金属学报, 2020, 56: 21)
[26] Wu Y T, Liu Y C, Li C, et al. Coarsening behavior of γ' precipitates in the γ'+γ area of a Ni3Al-based alloy [J]. J. Alloys Compd., 2019, 771: 526
doi: 10.1016/j.jallcom.2018.08.265
[27] Duan L J, Liu Y C. Relationships between elastic constants and EAM/FS potential functions for cubic crystals [J]. Acta Metall. Sin., 2020, 56: 112
(段灵杰, 刘永长. 立方晶体弹性常数和EAM/FS势函数的关系 [J]. 金属学报, 2020, 56: 112)
[28] Wei K, Li X X, Zhang Y, et al. Analysis on quality of GH4169 alloy billet with large specification at home and abroad [A]. Proceedings of the 14th China Annual Conference on Superalloy [C]. Beijing: Metallurgical Industry Press, 2019: 127
(韦 康, 李鑫旭, 张 勇等. 国内外三联冶炼GH4169合金大规格棒材质量分析 [A]. 第十四届中国高温合金年会论文集 [C]. 北京: 冶金工业出版社, 2019: 127)
[1] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[2] TAN Haibing, HUANG Shuo, WANG Jing, LI Shu, ZHU Changhong, ZHONG Yan, ZHONG Shilin, HE Aijie. Influence of White Spot Defects on Microstructure and Mechanical Property of the GH4586 Alloy[J]. 金属学报, 2020, 56(10): 1411-1422.
[3] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[4] DU Yubin, HU Xiaofeng, ZHANG Shouqing, SONG Yuanyuan, JIANG Haichang, RONG Lijian. Microstructure and Mechanical Properties of HSLA Steel Containing 1.4%Cu[J]. 金属学报, 2020, 56(10): 1343-1354.
[5] DU Jinhui,LV Xudong,DONG Jianxin,SUN Wenru,BI Zhongnan,ZHAO Guangpu,DENG Qun,CUI Chuanyong,MA Huiping,ZHANG Beijiang. Research Progress of Wrought Superalloys in China[J]. 金属学报, 2019, 55(9): 1115-1132.
[6] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[7] Mingzhe XI,Wei ZHOU,Junying SHANG,Chao LV,Zhenhao WU,Shiyou GAO. Effect of Heat Treatment on Microstructure and Mechanical Properties of Consecutive Point-Mode Forging and Laser Rapid Forming GH4169 Alloy[J]. 金属学报, 2017, 53(2): 239-247.
[8] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[9] Jialong TIAN,Yongcan LI,Wei WANG,Wei YAN,Yiyin SHAN,Zhouhua JIANG,Ke YANG. ALLOYING ELEMENT SEGREGATION EFFECT IN A MULTI-PHASE STRENGTHENED MARAGING STAINLESS STEEL[J]. 金属学报, 2016, 52(12): 1517-1526.
[10] Jinlan AN,Lei WANG,Yang LIU,Guohua XU,Guangpu ZHAO. INFLUENCES OF LONG-TERM AGING ON MICRO- STRUCTURE EVOLUTION AND LOW CYCLE FATIGUE BEHAVIOR OF GH4169 ALLOY[J]. 金属学报, 2015, 51(7): 835-843.
[11] Lei WANG,Jinlan AN,Yang LIU,Xiu SONG,Guohua XU,Guangpu ZHAO. INFLUENCE OF ELECTRIC FIELD TREATMENT ON PRECIPITATION BEHAVIOR OF d PHASE IN GH4169 SUPERALLOY[J]. 金属学报, 2015, 51(10): 1235-1241.
[12] LIU Fencheng ),LIN Xin ),YU Xiaobin ),HUANG Chunping ),HUANG Weidong ). EVOLUTION OF INTERFACE AND CRYSTAL ORIENTATION OF LASER SOLID FORMED GH4169 SUPERALLOY DURING RECRYSTALLIZATION[J]. 金属学报, 2014, 50(4): 463-470.
[13] TIAN Sugui, WANG Xin, XIE Jun, LIU Chen, GUO Zhongge,LIU Jiao, SUN Wenru. CHARACTERISTIC AND MECHANISM OF PHASE TRANSFORMATION OF GH4169G ALLOY DURING HEAT TREATMENT[J]. 金属学报, 2013, 49(7): 845-852.
[14] XU Ling, CHU Zhaokuang, CUI Chuanyong, GU Yuefeng, SUN Xiaofeng. CREEP MECHANISM OF A Ni-Co BASE WROUGHT SUPERALLOY[J]. 金属学报, 2013, 49(7): 863-870.
[15] ZHANG Haiyan,ZHANG Shihong, CHENG Ming. EFFECT OF δ PHASE ON THE TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY AT HIGH TEMPERATURE[J]. 金属学报, 2013, 29(4): 483-488.
No Suggested Reading articles found!