Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (10): 1215-1228    DOI: 10.11900/0412.1961.2021.00153
Overview Current Issue | Archive | Adv Search |
Present Research Situation and Prospect of Hot Working of Cast & Wrought Superalloys for Aero-Engine Turbine Disk in China
ZHANG Rui1, LIU Peng1, CUI Chuanyong1(), QU Jinglong2, ZHANG Beijiang2, DU Jinhui2, ZHOU Yizhou1, SUN Xiaofeng1
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.High-Temperature Materials Division, Central Iron and Steel Research Institute, Beijing 100081, China
Cite this article: 

ZHANG Rui, LIU Peng, CUI Chuanyong, QU Jinglong, ZHANG Beijiang, DU Jinhui, ZHOU Yizhou, SUN Xiaofeng. Present Research Situation and Prospect of Hot Working of Cast & Wrought Superalloys for Aero-Engine Turbine Disk in China. Acta Metall Sin, 2021, 57(10): 1215-1228.

Download:  HTML  PDF(4039KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, the demand for high-performance aero-engines has become crucial in China, and the service environment of turbine disk alloy becomes increasingly severe. A series of high resistant cast & wrought superalloys for turbine disks, such as GH4065, GH4720Li, GH4068, and GH4151, with working temperatures > 700°C, have been studied, produced, and applied widely. The current studies on cast & wrought alloys for turbine disks in China were summarized under the categories of homogenization treatment, cogging, disk forging, and microstructure and property regulation to promote the development of these superalloys and improve their comprehensive properties. The difficulties encountered during the research and preparation of these hard-to-deform superalloys and explored the alloys' potential development trend were outlined. The review would improve the production stability of the disk superalloys and promote their development.

Key words:  turbine disk      cast & wrought superalloy      hot working      microstructure and property     
Received:  12 April 2021     
ZTFLH:  TG14  
Fund: National Key Research and Development Program of China(2019YFA0705300、2017YFA-0700703);National Science and Technology Magjor Project of China(2019-VI-0006-0120);Doctoral Foundation of Liaoning Province(2020-BS-007);IMR Innovation Fund(2021-PY09)
About author:  CUI Chuanyong, professor, Tel: (024)83978292, E-mail: chycui@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00153     OR     https://www.ams.org.cn/EN/Y2021/V57/I10/1215

Fig.1  Alloying elements present in nickel-based superalloys[10]
AlloyCoCrTiAlNbMoWCNi
GH4065[11]13.016.03.72.10.74.04.00.020Bal.
GH4720Li[12]15.015.05.02.5-3.01.20.015Bal.
GH4068[13]25.014.05.72.2-2.81.20.015Bal.
GH4151[14]15.09.02.83.73.44.52.50.080Bal.
Table 1  Normal compositions of cast & wrought superalloys for aero-engine turbine disk[11-14]
Alloyw(Al + Ti + Nb)w(W + Mo)w(W) / w(Mo)w(Al) / w(Ti)w(γ') at 760oCγ' solvus temperature
%%%oC
GH40656.58.01.000.57361113
GH4720Li7.54.20.400.50451158
GH40687.93.90.430.39481160
GH41519.97.00.561.32541176
Table 2  Characteristic parameters of cast & wrought superalloys for aero-engine turbine disk[15]
Fig.2  Microstructure of as-cast GH4151 alloy (vacuum induction melting (VIM) ingot with diameter of 80 mm)[26]
Fig.3  Backscattered electron image of the interdendritic area (a) and elements distributions in the dendrite (b-h) of the solidified GH4720Li alloy[27]
Fig.4  Microstructures of GH4065 alloy prepared by improper cogging process[15]
Fig.5  Schematic of double-cone compression test[34]
Fig.6  Microstructures of GH4068 alloy after homogenization treatment (a) and cogging (b) (Insets show the magnification of select boxes)
Fig.7  Dynamic recrystallization mechanisms of GH4068 alloy[43]
Fig.8  Processing map of GH4068 alloy based on microstructure evolution (ε˙—strain rate)[37]
Fig.9  Processing map of U720Li alloy based on microstructure evolution [42]
Fig.10  Superplasticity of GH4068 alloy with γ + γ' micro-duplex microstructure
Fig.11  Microstructures of γ' phase in GH4068 with different cooling of solution treatment[48]
AlloyTemperatureστA
oCMPah%
GH4065[5]6509702974
750590519
GH4720Li[19]68083020911
73053016632
GH40686808305006
75053020815
GH415165010101725
7506201328
Table 3  High temperature endurance performances of cast & wrought superalloys for aero-engine turbine disk[5,19]
Fig.12  Creep mechanisms of several typical disk superalloys[48]
1 Logunov A V, Zavodov S A, Danilov D V. The challenges in development of nickel-based heat-resistant superalloys for gas turbine disks and creation of a new superalloy with increased operational characteristics [J]. Mater. Today: Proc., 2019, 11: 459
2 Gu Y F, Fukuda T, Cui C Y, et al. Comparison of mechanical properties of TMW alloys, new generation of cast-and-wrought superalloys for disk applications [J]. Metall. Mater. Trans., 2009, 40A: 3047
3 Li F L, Fu R, Yin F J, et al. Impact of γ′ (Ni3 (Al, Ti)) phase on dynamic recrystallization of a Ni-based disk superalloy during isothermal compression [J]. J. Alloys Compd., 2017, 693: 1076
4 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2008: 217
5 Zhao G P, Huang S, Zhang B J, et al. Microstructure control and mechanical properties of the newest nickel-based wrought superalloy GH4065A [J]. J. Iron Steel Res., 2015, 27(2): 37
赵光普, 黄 烁, 张北江等. 新一代镍基变形高温合金GH4065A的组织控制与力学性能 [J]. 钢铁研究学报, 2015, 27(2): 37
6 Qu J L, Bi Z N, Du J H, et al. Research on process optimization of isothermal forging for superalloy GH4720Li disc [A]. Proceedings of the 12th China Superalloy Annual Meeting [C]. Beijing: the Chinese Society for Metals, 2011: 263
曲敬龙, 毕中南, 杜金辉等. GH4720Li合金盘锻件的等温锻造工艺优化研究 [A]. 第十二届中国高温合金年会论文集 [C]. 北京: 中国金属学会, 2011: 263
7 Cui C Y, Jin T, Sun X F. A nickel-cobalt base superalloy with good microstructure stability and easy processing ability [P]. Chin Pat, 201010505227.3, 2012
崔传勇, 金 涛, 孙晓峰. 一种组织稳定性好、易加工的镍钴基高温合金 [P]. 中国专利, 201010505227.3, 2012)
8 Lv S M, Chen J B, He X B, et al. Investigation on Sub-Solvus recrystallization mechanisms in an advanced γ-γ' nickel-based superalloy GH4151 [J]. Materials, 2020, 13: 4553
9 Liu F F, Chen J Y, Dong J X, et al. The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy [J]. Mater. Sci. Eng., 2016, A651: 102
10 Ning Y Q, Zhang B Y. Hot forming of superalloy parts and structures [A]. Reference Module in Materials Science and Materials Engineering [C]. Amsterdam: Elsevier, 2020: 1
11 Huang S, Zhang B J, Tian Q, et al. Isothermal and static oxidation behavior of superalloy GH4065A [J]. J. Iron Steel Res., 2016, 28(7): 55
黄 烁, 张北江, 田 强等. 高温合金GH4065A的恒温静态氧化行为 [J]. 钢铁研究学报, 2016, 28(7): 55
12 Du J H, Qu J L, Deng Q, et al. As-cast microstructure and homogenization process of alloy GH720Li [J]. J. Iron Steel Res., 2005, 17(3): 60
杜金辉, 曲敬龙, 邓 群等. GH720Li合金的铸态组织和均匀化工艺 [J]. 钢铁研究学报, 2005, 17(3): 60
13 Zhou Z J, Zhang R, Cui C Y, et al. Effects of homogenization treatment on the microsegregation of a Ni-Co based superalloy produced by directional solidification [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 943
14 Bi Z N, Qu J L, Du J H, et al. Segregation behavior and investigation on homogenization for a new difficult-to-deform superalloy ЭК151 ingot [J]. J. Iron Steel Res., 2011, 23(suppl.2): 263
毕中南, 曲敬龙, 杜金辉等. 新型难变形高温合金ЭК151的偏析行为及均匀化工艺研究 [J]. 钢铁研究学报, 2011, 23(): 263
15 Zhang B J, Huang S, Zhang W Y, et al. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques [J]. Acta Metall. Sin., 2019, 55: 1095
张北江, 黄 烁, 张文云等. 变形高温合金盘材及其制备技术研究进展 [J]. 金属学报, 2019, 55: 1095
16 Zhang B J, Zhao G P, Zhang W Y, et al. Investigation of high performance disc alloy GH4065 and associated advanced processing techniques [J]. Acta Metall. Sin., 2015, 51: 1227
张北江, 赵光普, 张文云等. 高性能涡轮盘材料GH4065及其先进制备技术研究 [J]. 金属学报, 2015, 51: 1227
17 Zhang R, Tian C G, Cui C Y, et al. Portevin-Le Châtelier effect in a wrought Ni-Co based superalloy [J]. J. Alloys Compd., 2020, 818: 152863
18 Cui C Y, Zhang R, Zhou Y Z, et al. Portevin-Le Châtelier effect in wrought Ni-based superalloys: Experiments and mechanisms [J]. J. Mater. Sci. Technol., 2020, 51: 16
19 Wang Q Z, Shi L, Tang C. Metallurgy quality of GH4720Li alloy by VIM + PESR + VAR [J]. Baosteel Tech., 2020, (3): 62
王庆增, 石 磊, 唐 超. GH4720Li合金VIM+PESR+VAR三联工艺及冶金质量 [J]. 宝钢技术, 2020, (3): 62
20 Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China [J]. Acta Metall. Sin., 2019, 55: 1115
杜金辉, 吕旭东, 董建新等. 国内变形高温合金研制进展 [J]. 金属学报, 2019, 55: 1115
21 Li F L, Fu R, Feng D, et al. Microstructure and segregation behavior of Rene88DT alloy prepared by ESR-CDS [J]. Rare Met. Mater. Eng., 2016, 45: 1437
22 Zhuang X P, Tan Y, Zhao L H, et al. Microsegregation of a new Ni-Co-based superalloy prepared through electron beam smelting and its homogenization treatment [J]. J. Mater. Res. Technol., 2020, 9: 5422
23 Fu R, Li F L, Yin F J, et al. Microstructure evolution and deformation mechanisms of the electroslag refined-continuous directionally solidified (ESR-CDS®) superalloy Rene88DT during isothermal compression [J]. Mater. Sci. Eng., 2015, A638: 152
24 Wang Z X, Huang S, Zhang B J, et al. Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy [J]. Acta Metall. Sin., 2019, 55: 417
王资兴, 黄 烁, 张北江等. 高合金化GH4065镍基变形高温合金点状偏析研究 [J]. 金属学报, 2019, 55: 417
25 Bi Z N, Qu J L, Du J H, et al. Microstructure characteristics and thermodynamic calculation of equilibrium precipitated phases in a new difficult-to-deform superalloy ЭК151 [J]. Rare Met. Mater. Eng., 2013, 42: 919
毕中南, 曲敬龙, 杜金辉等. 新型难变形高温合金ЭК151的组织特征及平衡析出相热力学计算 [J]. 稀有金属材料与工程, 2013, 42: 919
26 Li X X, Jia C L, Jiang Z H, et al. Investigation of solidification behavior in a new high alloy Ni-based superalloy [J]. JOM, 2020, 72: 4139
27 Chang L T, Jin H, Sun W R. Solidification behavior of Ni-base superalloy Udimet 720Li [J]. J. Alloys Compd., 2015, 653: 266
28 Li X X, Jia C L, Zhang Y, et al. Segregation and homogenization for a new nickel-based superalloy [J]. Vacuum, 2020, 177: 109379
29 Semiatin S L, Kramb R C, Turner R E, et al. Analysis of the homogenization of a nickel-base superalloy [J]. Scr. Mater., 2004, 51: 491
30 Zhu Y X. Shi Changxu's major contributions in the field of superalloy [J]. Sci. Technol. Rev., 2018, 36(19): 21
朱耀宵. 师昌绪在高温合金领域的重大贡献 [J]. 科技导报, 2018, 36(19): 21
31 Qu J L, Du J H, Deng Q, et al. Effect of compound jacketing rolling process on microstructure of difficult-to-deform superalloy GH720Li [J]. Mater. Sci. Technol., 2008, 16: 121
曲敬龙, 杜金辉, 邓 群等. 复合包套轧制工艺对难变形高温合金GH720Li组织的影响 [J]. 材料科学与工艺, 2008, 16: 121
32 Cao Y X, Application of the soft package technology on titanium alloy forging [J]. Aviat. Maint. Eng., 2015, (12): 92
曹颖玺. 钛合金锻造软包套工艺应用研究 [J]. 航空维修与工程, 2015, (12): 92
33 Semiatin S L, Weaver D S, Kramb R C, et al. Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material [J]. Metall. Mater. Trans, 2004, 35A: 679
34 Fan H Y, Jiang H, Dong J X, et al. An optimization method of upsetting process for homogenized, nickel-based superalloy Udimet 720Li ingot considering both cracking and recrystallization [J]. J. Mater. Process. Technol., 2019, 269: 52
35 Chen X M, Lin Y C, Wen D X, et al. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation [J]. Mater. Des., 2014, 57: 568
36 Kan Z. Study on microstructure evolvement and forging technology of great size bar for GH4720Li alloy [D]. Shenyang: Northeastern University, 2017
阚 志. GH4720Li合金微观组织演变及大尺寸棒坯锻造工艺研究 [D]. 沈阳: 东北大学, 2017
37 Liu P, Zhang R, Yuan Y, et al. Hot deformation behavior and workability of a Ni-Co based superalloy [J]. J. Alloys Compd., 2020, 831: 154618
38 Han G M, Li F, Sun B D. Multimodal distribution of γ′ phase and effect on hot deformation in a wrought nickel base superalloy [J]. Rare Met. Mater. Eng., 2019, 48: 2821
39 Li F, Fu R, Feng D, et al. Microstructure evolution during hot deformation of as cast ESR-CDSed superalloy Rene88DT [J]. Mater. Res. Innov., 2014, 18(suppl. 4): S4-421
40 Ning Y Q, Wang T, Fu M W, et al. Competition between work-hardening effect and dynamic-softening behavior for processing as-cast GH4720Li superalloys with original dendrite microstructure during moderate-speed hot compression [J]. Mater. Sci. Eng., 2015, A642: 187
41 Wang M J, Wang W R, Liu Z L, et al. Hot workability integrating processing and activation energy maps of Inconel 740 superalloy [J]. Mater. Today Commun., 2018, 14: 188
42 Wan Z P, Hu L X, Sun Y, et al. Hot deformation behavior and processing workability of a Ni-based alloy [J]. J. Alloys Compd., 2018, 769: 367
43 Liu P, Zhang R, Yuan Y, et al. Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/supersolvus temperatures [J]. J. Mater. Sci. Technol., 2020, 77: 66
44 Katnagallu S, Vernier S, Charpagne M A, et al. Nucleation mechanism of hetero-epitaxial recrystallization in wrought nickel-based superalloys [J]. Scr. Mater., 2021, 191: 7
45 Qu J L, Bi Z N, Du J H, et al. Hot deformation behavior of nickel-based superalloy GH4720Li [J]. J. Iron Steel Res. Int., 2011, 18: 59
46 Zhou G, Han Y B, Qu J L, et al. A comparative study of various flow instability criteria in processing map of superalloy U720Li [J]. J Northeastern Univ (Nat Sci), 2012, 33: 702
周 舸, 韩寅奔, 曲敬龙等. U720Li镍基高温合金不同失稳判据的热加工图 [J]. 东北大学学报(自然科学版), 2012, 33: 702
47 Shen J Y, Hu L X, Sun Y, et al. Hot deformation behaviors and three-dimensional processing map of a nickel-based superalloy with initial dendrite microstructure [J]. J. Alloys Compd., 2020, 822: 153735
48 Xu L. Investigation on microstructures and mechanical properties of Ni-Co based wrought superalloys [D]. Beijing: University of Chinese Academy of Sciences, 2014
徐 玲. Ni-Co基变形高温合金组织性能研究 [D]. 北京: 中国科学院大学, 2014
49 Xu L, Chu Z K, Cui C Y, et al. Creep mechanism of a Ni-Co base wrought superalloy [J]. Acta Metall. Sin., 2013, 49: 863
徐 玲, 储昭贶, 崔传勇等. 一种镍钴基变形高温合金蠕变变形机制的研究 [J]. 金属学报, 2013, 49: 863
50 Gu Y F, Cui C Y, Yuan Y, et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications [J]. Acta Metall. Sin., 2015, 51: 1191
谷月峰, 崔传勇, 袁 勇等. 一种高性能航空涡轮盘用铸锻合金的研究进展 [J]. 金属学报, 2015, 51: 1191
51 Xu H, Zhang Z J, Zhang P, et al. The synchronous improvement of strength and plasticity (SISP) in new Ni-Co based disc superalloys by controling stacking fault energy [J]. Sci. Rep., 2017, 7: 8046
52 Zhu C Z, Zhang R, Cui C Y, et al. Effect of Ta addition on the microstructure and tensile properties of a Ni-Co base superalloy [J]. Metall. Mater. Trans., 2021, 52A: 108
53 Zhu C Z, Zhang R, Cui C Y, et al. Influence of Ta content on microstructure and creep behavior of a Ni-Co base disc superalloy [J]. Mater. Sci. Eng., 2021, A802: 140646
54 Xu H, Zhang Z J, Zhang P, et al. Formation of nanograins in Ni-Co based superalloys compressed quasistatically at high temperature [J]. Scr. Mater., 2017, 136: 92
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[3] XIONG Tianying, WANG Jiqiang. Research Progress of Cold Spray in Institute of Metal Research, Chinese Academy of Sciences[J]. 金属学报, 2023, 59(4): 537-546.
[4] REN Yuan, DONG Xinyuan, SUN Hao, LUO Xiaotao. Oxide Cleaning Effect of In-Flight CuNi Droplet During Atmospheric Plasma Spraying by B Addition[J]. 金属学报, 2022, 58(2): 206-214.
[5] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[6] BI Zhongnan,QIN Hailong,DONG Zhiguo,WANG Xiangping,WANG Ming,LIU Yongquan,DU Jinhui,ZHANG Ji. Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings[J]. 金属学报, 2019, 55(9): 1160-1174.
[7] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[8] ZHANG Guoqing,ZHANG Yiwen,ZHENG Liang,PENG Zichao. Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application[J]. 金属学报, 2019, 55(9): 1133-1144.
[9] Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. 金属学报, 2019, 55(1): 59-72.
[10] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[11] Hai ZHANG,Shilei LI,Gang LIU,Yanli WANG. Effects of Hot Working on the Microstructure and Thermal Ageing Impact Fracture Behaviors of Z3CN20-09MDuplex Stainless Steel[J]. 金属学报, 2017, 53(5): 531-538.
[12] LI Linhan, DONG Jianxin, ZHANG Maicang, YAO Zhihao. INTEGRATED SIMULATION OF THE FORGING PROCESS FOR GH4738 ALLOY TURBINE DISK AND ITS APPLICATION[J]. 金属学报, 2014, 50(7): 821-831.
[13] QIN Guoliang SU Yuhu WANG Shujun. MICROSTRUCTURES AND PROPERTIES OF PULSED MIG ARC BRAZED–FUSION WELDED JOINT OF Al ALLOY AND GALVANIZED STEEL[J]. 金属学报, 2012, 48(8): 1018-1024.
[14] ZHANG Beijiang; ZHAO Guangpu; XU Guohua; FENG Di. Hot deformation behavior and micro-structure evolution of superalloy GH742[J]. 金属学报, 2005, 41(11): 1207-1214 .
[15] CAO Mingzhou;HAN Dong;ZHOU Jing;LI Dong Institute of Metal Research; Academia Sinica; Shenyang Associate professor. MICROSTRUCTURES AND PROPERTIES OF Mn-CONTAINING TiAl ALLOYS[J]. 金属学报, 1990, 26(3): 69-73.
No Suggested Reading articles found!