Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (6): 667-674    DOI: 10.3724/SP.J.1037.2013.00035
Current Issue | Archive | Adv Search |
DISLOCATION MECHANISM OF SURFACE MODIFICATION FOR COMMERCIAL PURITY ALUMINUM  AND ALUMINUM ALLOY BY LASER SHOCK PROCESSING
LUO Xinmin1), CHEN Kangmin1,2), ZHANG Jingwen1), LU Jinzhong 3), REN Xudong 3),LUO Kaiyu3), ZHANG Yongkang4)
1) School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013
2) Analysis and Test Center, Jiangsu University, Zhenjiang 212013
3) School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013
4) School of Mechanical Engineering, Southeast University, Nanjing 211189
Cite this article: 

LUO Xinmin, CHEN Kangmin, ZHANG Jingwen, LU Jinzhong,REN Xudong,LUO Kaiyu, ZHANG Yongkang. DISLOCATION MECHANISM OF SURFACE MODIFICATION FOR COMMERCIAL PURITY ALUMINUM  AND ALUMINUM ALLOY BY LASER SHOCK PROCESSING. Acta Metall Sin, 2013, 49(6): 667-674.

Download:  PDF(4729KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Surface modification experiment of the commercial purity aluminum (α-Al) and Al-Cu-Mg alloyed aviation aluminum alloy 2A02 by laser shock processing (LSP) was implemented. The surface strengthening effect of both the target materials was investigated from dislocation mechanisms of microstructural response by means of TEM method. The results show that the strengthening effect of the two kinds of materials by laser shock processed is significantly different. The strengthening mechanism of α-Al by laser shock can be attributed to the multiplication of a large number of dislocations. With the increase of the impact number of laser shock and the degree of deformation, the new-generated dislocations will pile up and interact with the forest dislocations, and the dislocation lines will gradually evolve into waved-like, or wind into dislocation tangles and dislocation networks. But the hardness curve of the laser shocked (α-Al) will fast and linearly decline due to Bauschinger effect (BE) and stress wave damping. The laser shock strengthening mechanisms of the aging-hardened aluminum alloy 2A02 can be summarized to the enhancement of the matching between the elastic energy of dislocations with the ultra-high energy of laser shock processing due to the higher matrix strength and the dislocation-pinning effect of large number of dispersed precipitates, as well as the complex dislocation networks in between the precipitates constructed by the dislocations induced by laser shock. The matrix strengthened by laser shock processing and the precipitates keep the extra-semi-coherent relationship to coordinate the total deformation, with the number of laser shock increase, dislocation multiplication and the vacancy motion constitutes geometrically necessary boundaries (GNBs), which consists of the sub-grain boundaries to refine the matrix into the nanometer-grains. The strengthening mechanism of surface modification of aluminum alloy by laser shock processing is formed of the internal stress state caused by the combination of the complex dislocation configurations and the Hall-Petch effect of the nanocrystalline grains.

Key words:  commercial purity aluminum (α-Al)      aluminum alloy      laser shock processing      surface modification, dislocation      microstructure     
Received:  24 January 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00035     OR     https://www.ams.org.cn/EN/Y2013/V49/I6/667

[1] Lu J Z, Luo K Y, Zhang Y K, Cui C Y, Sun G F, Zhou J Z, Zhang L, You J,Chen K M, Zhong J W.  Acta Mater, 2010; 58: 3984

[2] Trdan U, Grum J, Hill M R.  Mater Sci Forum, 2011; 681: 480
[3] Montross C S, Wei T, Ye L, Clark G, Mai Y W.  Int J Fatigue, 2002; 24: 1021
[4] Clauer A H, Lahrman D F.  Key Eng Mater, 2001; 197: 121
[5] Zhou Z M.  Dislocation Configuration Evolution. Shenyang: Northeastern University Press, 2003: 60
 (周志敏. 位错组态演化. 沈阳: 东北大学出版社, 2003: 60)
[6] Luo X M, Ma H, Zhang J W, Zhang Y K.  Mater Rev, 2010; 24(5): 11
 (罗新民, 马辉, 张静文, 张永康. 材料导报, 2010; 24(5): 11)
[7] Guo N G, Luo X M, Hua Y Q.  Mater Rev, 2006; 20(6): 10
 (郭乃国, 罗新民, 花银群. 材料导报, 2006; 20(6): 10)
[8] Liang X B, Zhang Z B, Chen Y X, Xu B S.  Acta Metall Sin, 2012; 48: 289
 (梁秀兵, 张志彬, 陈永雄, 徐滨士. 金属学报, 2012; 48: 289)
[9] Luo X M, Zhao G Z, Chen K M, Zhang Y K, Luo K Y, Ren X D.  Acta Metall Sin, 2012; 48: 1116
 (罗新民, 赵广志, 陈康敏, 张永康, 罗开玉, 任旭东. 金属学报, 2012; 48: 1116)
[10] Zhang K S.  Acta Mech Sin, 2004; 36: 714
 (张克实. 力学学报, 2004; 36: 714)
[11] Zhao Z W.  Appl Math Mech, 2001; 22: 79
 (赵祖武. 应用数学和力学, 2001; 22: 79)
[12] Feng A X, Nie G F, Xue W, Cao Y P, Xu X X, Li B, Shi F.  Acta Metall Sin, 2012; 48: 205
 (冯爱新, 聂贵峰, 薛伟, 曹宇鹏, 徐晓翔, 李彬, 施芬. 金属学报, 2012; 48: 205)
[13] Zhang G T, Sheng G M, Huang L.  Mater Rev, 2008; 22(spec): 135
 (张功庭, 盛光敏, 黄利. 材料导报, 2008; 22(专辑): 135)
[14] Liu G, Sun Y L, Hu J, Zhou K.  Acta Metall Sin, 2010; 46: 979
 (刘刚, 孙雅丽, 胡津, 周科. 金属学报, 2010; 46: 979)
[15] Zhao J S.  Fundamental Theory of Dislocation. Beijing: Beijing Institute of Aviation Press, 1982: 111
(赵敬世. 位错理论基础. 北京: 北京航空学院出版社, 1982: 111)
[16] Cahn R W, Haasen P.  Physical Metallurgy-III. Amsterdam: Elsevier Science B.V., 1996: 1979
[17] Deng Y L, Zhang X M, Tang J G, Liu Y, Chen Z Y, Zhou Z P.  Acta Metall Sin, 2005; 41: 477
 (邓运来, 张新明, 唐建国, 刘瑛, 陈志永, 周卓平. 金属学报, 2005; 41: 477)
[18] Hu Q, Zhang Q C, Fu S H, Cao P T, Gong M.  Acta Phys Sin, 2011; 60: 096201
 (胡琦, 张青川, 符师桦, 曹鹏涛, 龚明. 物理学报, 2011; 60: 096201)
[19] Xiong X M, Zhang Q C, Cao P T, Xiao R.  Acta Metall Sin, 2009; 458: 892
  (熊少敏, 张青川, 曹鹏涛, 肖锐. 金属学报, 2009; 458: 892)
[20] Liu G, Yan W C, Yu F X, Zhao G, Zhao X, Zuo L.  Acta Metall Sin, 2011; 47: 649
 (刘刚, 严文聪, 于福晓, 赵刚, 赵骧, 左良. 金属学报, 2011; 47: 649)
[21] Liu Q, Yao Z Y, Godfrey A, Liu W.  Acta Metall Sin, 2009; 45: 641
 (刘庆, 姚宗勇, Godfrey A, 刘伟. 金属学报, 2009; 45: 641)
[22] Yao Z Y, Liu Q, Godfrey A, Liu W.  Acta Metall Sin, 2009; 45: 647
 (姚宗勇, 刘庆, Godfrey A, 刘伟. 金属学报, 2009; 45: 647)
[23] Wu X L, Li B, Ma E.  Appl Phys Lett, 2007; 91: 141908
[24] Li M, Chu W Y, Gao K W, Qiao L J.  Acta Metall Sin, 2003; 39: 1099
 (李明, 褚武扬, 高克玮, 乔利杰. 金属学报, 2003; 39: 1099)
[25] Luo X M, Zhang J W, Ma H, Zhang Y K, Chen K M, Ren X D, Luo K Y.  Trans Mater Heat Treat, 2012; 33: 8
 (罗新民, 张静文, 马辉, 张永康, 陈康敏, 任旭东, 罗开玉. 材料热处理学报, 2012; 33: 8)
[26] Lu K, Lu L.  Acta Metall Sin, 2000; 36: 785
 (卢柯, 卢磊. 金属学报, 2000; 36: 785)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!