Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (6): 675-681    DOI: 10.3724/SP.J.1037.2013.00090
Current Issue | Archive | Adv Search |
CREVICE CORROSION OF GRADE-2 Ti IN SIMULATED GROUNDWATER FOR GEOLOGICAL DISPOSAL OF HIGH-LEVEL RADIOACTIVE NUCLEAR WASTE
WEI Xin1,2), DONG Junhua2), KE Wei2)
1) College of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
2) State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WEI Xin, DONG Junhua, KE Wei. CREVICE CORROSION OF GRADE-2 Ti IN SIMULATED GROUNDWATER FOR GEOLOGICAL DISPOSAL OF HIGH-LEVEL RADIOACTIVE NUCLEAR WASTE. Acta Metall Sin, 2013, 49(6): 675-681.

Download:  PDF(2827KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influences of temperature and Cl- concentration on the crevice corrosion of grade-2 Ti in the simulated geological disposal environment of high-level radioactive nuclear waste were investigated by potentiodynamic polarization curves, electrochemical impedance spectroscopy, galvanic current monitoring and potentiostatic polarization. The results showed that all the creviced specimens exhibited the passive characteristics in the initial immersion period at 25-95℃. With extending the immersion time, the crevice corrosion of Ti initiated as a result of the gradual aggressive environment (higher Cl- concentration and more acidification) in the crevice. As increasing the temperature and Cl- concentration, the galvanic current increased and the crevice corrosion resistance was decreased. In addition, the critical temperature of crevice corrosion decreased with increasing Cl- concentration and the applied potential. The damage caused by anodic active dissolution in the crevice mainly located near the crevice mouth.

Key words:  high-level radioactive waste      Ti      crevice corrosion      temperature     
Received:  21 February 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00090     OR     https://www.ams.org.cn/EN/Y2013/V49/I6/675

[1] Lee S G, Solomon A A. Mater Sci Eng, 2006; A434: 114

[2] Su R, Cheng Q F, Wang J, Zhao H G, Guo Y H, Chen W M, Jin Y X. World Nucl Geosci, 2011; 28: 45
(苏锐, 程琦福, 王驹, 赵宏刚, 郭永海, 陈伟明, 金远新. 世界核地质科学, 2011; 28: 45)
[3] Wang J, Chen W M, Su R, Guo Y H, Jin Y X. Chin J Rock Mech Eng, 2006; 25: 649
(王驹, 陈伟明, 苏锐, 郭永海, 金远新. 岩石力学与工程学报, 2006; 25: 649)
[4] Bennett D G, Gens R. J Nucl Mater, 2008; 379: 1
[5] Rempe N T. Prog Nucl Energy, 2007; 49: 365
[6] Chapman N, Hooper A. Proc Geologist Assoc, 2012; 123: 46
[7] Feron D, Crusset D, Gras J M. J Nucl Mater, 2008; 379: 16
[8] Johnson L H, Shoesmith D W, Ikeda B M, King F. Mater Res Soc Symp Proc, 1992; 257: 439
[9] Shoesmith D W, Hocking W H, Ikeda B M, King F, No$\ddot{\rm e$l J J, Sunder S. Can J Chem, 1997; 75: 1566
[10] Nakayama G, Sakakibara Y, Taniyama Y, Cho H, Jintoku T, Kawakami S, Takemoto M. J Nucl Mater, 2008; 379: 174
[11] Nishimura T. J Nucl Mater, 2009; 385: 495
[12] He X, Noel J J, Shoesmith D W. J Electrochem Soc, 2002; 149: B440
[13] Mckay P, Mitton D B.  Corrosion, 1985; 41: 52
[14] He X, Noel J J, Shoesmith D W. Corrosion, 2004; 60: 378
[15] Tsujikawa S, Kojima Y. Mater Res Soc Symp Proc, 1991; 212: 261
[16] Tsujikawa S, Kojima Y. Mater Res Soc Symp Proc, 1993; 294: 311
[17] Yan L, Noel J J, Shoesmith D W. Electrochim Acta, 2011; 56: 1810
[18] Yokoyama K, Ogawa T, Asaoka K, Sakai J. Mater Sci Eng, 2004; A384: 19
[19] Nishimura R, Shirono J, Jonokuchi A. Corros Sci, 2008; 50: 2691
[20] Abdulsalam M I. J Mater Eng Perform, 2007; 16: 736
[21] Kennell G F, Evitts R W, Heppner K L. Corros Sci, 2008; 50: 1716
[22] Rajendran N, Nishimura T. Mater Corros, 2007; 58: 334
[23] Han D, Jiang Y M, Shi C, Deng B, Li J. J Mater Sci, 2012; 47: 1018
[24] Han D, Jiang Y M, Deng B, Zhang L, Gao J, Tan H, Li J. Corrosion, 2011; 67: 025004-1
[25] Pickering H W. Corros Sci, 1989; 29: 325
[26] Al-Zahrani A M, Pickering H W. Electrochim Acta, 2005; 50: 3420
[27] Yan M C, Weng Y J. J Chin Soc Corros Prot, 2004; 24: 95
(闫茂成, 翁永基. 中国腐蚀与防护学报, 2004; 24: 95)
[28] Heppner K L, Evitts R W, Postlethwaite J.J Electrochem Soc, 2005; 152: B89
[29] Brigham R J.Corros Sci, 1992; 33: 799
[30] Brigham R J.Corros Sci, 1988; 28: 57
[31] Pickering H W. J Electrochem Soc, 2003; 150: K1
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[8] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[9] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[10] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[11] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[12] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[13] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[14] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[15] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
No Suggested Reading articles found!