Please wait a minute...
Acta Metall Sin  2013, Vol. 29 Issue (4): 408-414    DOI: 10.3724/SP.J.1037.2012.00656
Current Issue | Archive | Adv Search |
EFFECT OF CARBON CONTENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF COLD-ROLLED C-Mn-Al-Si TRIP STEEL
FU Bo1, YANG Wangyue1,LI Longfei2, SUN Zuqing2
1)School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2)State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

FU Bo, YANG Wangyue, LI Longfei, SUN Zuqing. EFFECT OF CARBON CONTENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF COLD-ROLLED C-Mn-Al-Si TRIP STEEL. Acta Metall Sin, 2013, 29(4): 408-414.

Download:  PDF(1435KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The low-alloyed transformation induced plasticity (TRIP) steels demonstrate an improved combination of strength and ductility, and have became a promising candidate for the application of automotive bodies to reduce the weight without the loss of crash-worthiness. The typical microstructure of TRIP steels consists of the ferrite matrix and a dispersion of bainite, martensite and the retained austenite. The existence of an amount of metastable retained austenite is responsible for the improved mechanical properties, resulted from the enhanced strain hardening capabilities of TRIP steels due to the strain-induced martensitic transformation during straining. The carbon content is considered as an important factor that influences the amount and stability of the retained austenite. In the present work, two cold-rolled C-Mn-Al-Si TRIP steels with different carbon contents, (0.1% and 0.2%, mass fraction) were fabricated by intercritical annealing and isothermal transformation. The microstructures and the mechanical behaviors of the used steels were investigated by OM, XRD and uniaxial tensile tests at room temperature. The results indicated that with the same isothermal transformation time at 400℃,the steels with high carbon content obtained lower fraction of bainite and larger fraction of martensite, and demonstrated higher strength and larger elongation than those of steels with low carbon content. The excellent ductility of steels with high carbon content was mainly attributed to its strong TRIP effect during deformation, resulted from the larger fraction of retained austenite as well as the higher carbon content of retained asutenite in the multiphase microstructure. The value of the product of tensile strength and total elongation, representing the combination of strength and ductility of steels, was increased linearly with the increase of the value of the product of volume fraction and carbon content of retained austenite, which could be used to characterize the TRIP effect. Variation of the formation rate of strain-induced martensite was similar to that of the incremental strain hardening exponent with strain during deformation, further proved the important role of TRIP effect in influencing the strain hardening capabilities of TRIP steels.

Key words:  cold-rolled TRIP steel      C-Mn-Al-Si      carbon content      microstructure      mechanical property     
Received:  02 November 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00656     OR     https://www.ams.org.cn/EN/Y2013/V29/I4/408

[1] De Cooman B C.  Curr Opin Solid State Mater Sci, 2004; 8: 285


[2] Jacques P J, Girault E, Harlet Ph, Delannay F.  ISIJ Int, 2001; 41: 1061

[3] Wang X D, Wang L, Rong Y H.  Heat Treat, 2008; 23: 8

(王晓东, 王利, 戎咏华. 热处理, 2008; 23: 8)

[4] Wei X C, Li L, Fu R Y.  J Iron Steel Res, 2001; 13: 71

(韦习成, 李麟, 符仁钰. 钢铁研究学报, 2001; 13: 71)

[5] Jacques P J, Girault E, Mertens A, Verlinden B, Humbeeck J, Delannay F.  ISIJ Int, 2001; 41: 1068

[6] De Meyer M, Vanderschueren D, De Cooman B C.  ISIJ Int, 1999; 39: 813

[7] Mahieu J, Maki J, De Cooman B C, Claessens S.  Metall Mater Trans, 2002; 33A: 2573

[8] Yin Y Y, Yang W Y, Li L F, Sun Z Q, Wang X T.  Acta Metall Sin, 2008; 44: 1292

(尹云洋, 杨王玥, 李龙飞, 孙祖庆, 王西涛. 金属学报, 2008; 44: 1292)

[9] Xu K, Liu G Q.  Trans Mater Heat Treat, 2009; 30: 68

(徐锟, 刘国权. 材料热处理学报, 2009; 30: 68)

[10] Jing C N, Liu Z X, Wang Z C, Wang M G, Kim S J.  J Univ Sci Technol Beijing, 2008; 30: 610

(景财年, 刘在学, 王作成, 王明钢, 金成俊. 北京科技大学学报, 2008; 30: 610)

[11] Li Z, Wu D, Wang J F.  J Northeast Univ (Nat Sci), 2005; 26: 452

(李壮, 吴迪, 王佳夫. 东北大学学报(自然科学版), 2005; 26: 452)

[12] Jacques P J.  Curr Opin Solid State Mater Sci, 2004; 8: 259

[13] Miller R L.  Trans ASM, 1964; 57: 892

[14] Emadoddin E, Akbarzadeh A, Daneshi G H.  Mater Charact, 2006; 57: 408

[15] Sakuma Y, Matsumura O, Akisue O.  ISIJ Int, 1991; 31: 1348

[16] Chiang J, Lawrence B, Boyd J D, Pilkey A K.  Mater Sci Eng, 2011; A528: 4516

[17] Moat R J, Zhang S Y, Kelleher J, Mark A F, Mori T, Withers P J.  Acta Mater, 2012; 60: 6931

[18] Haidemenopoulos G N, Vasilakos A N.  Steel Res, 1996; 67: 513

[19] Bourell D L, Rizk A.  Acta Metall, 1983; 31: 609

[20] Davies R G.  Metall Trans, 1979; 10A: 1549

[21] Sachdev A K.  Acta Metall, 1983; 31: 2037

[22] Jacques P J, Furnemont Q, Mertens A, Delannay F.  Philos Mag, 2001; 81A: 1789

[23] Tsukatani I, Hashimoto S I, Inoue T.  ISIJ Int, 1991; 31: 992

[24] Olson G B, Cohen M.  Metall Trans, 1975; 6A: 791

[25] Samek L, De Moor E, Penning J, De Cooman B C.  Metall Trans, 2006; 36A: 109
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!