Please wait a minute...
Acta Metall Sin  2013, Vol. 29 Issue (4): 399-407    DOI: 10.3724/SP.J.1037.2012.00745
Current Issue | Archive | Adv Search |
EFFECT OF BAINITIC TRANSFORMATION TEMPERATURE ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF THE HOT ROLLED TRIP STEEL CONTAINING Ti AND Mo AND ITS PRECIPITATION CHARACTERISTICS
WANG Changjun, SUN Xinjun, YONG Qilong, LI Zhaodong, ZHANG Xi, JIANG Lu
Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081
Cite this article: 

WANG Changjun, SUN Xinjun, YONG Qilong, LI Zhaodong, ZHANG Xi, JIANG Lu. EFFECT OF BAINITIC TRANSFORMATION TEMPERATURE ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF THE HOT ROLLED TRIP STEEL CONTAINING Ti AND Mo AND ITS PRECIPITATION CHARACTERISTICS. Acta Metall Sin, 2013, 29(4): 399-407.

Download:  PDF(5449KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the increasing consciousness for reducing fuel consumption and improving automobiles safety, the automotive industry is urgent to develop a new-type of steel with high strength and excellent formability. Among many high strength steels, the transformation induced plasticity (TRIP) steel may be a good candidate for automotive applications, as it drastically improves the balance between strength and ductility compared to precipitation hardened and solution hardened steels. While the tensile strength of conventional hot rolled TRIP steels are usually between 500 and 600 MPa, the TRIP steel with higher tensile strength, especially in excess of 750 MPa, is becoming increasingly important for the automotive industry. Thus, many strengthening mechanisms, such as precipitation strengthening, solution strengthening, refinement strengthening and dislocation strengthening, have been employed to improve the strength of the TRIP steel. Among them, microalloying with Nb, V and Ti, may provide effective means for further strengthening via grain refinement and precipitation strengthening. So far, many researches about the Ti--microalloyed high strength low alloy (HSLA) steel have been reported. However, the influences of alloying elements Ti and Mo on the hot rolled TRIP steel, especially the precipitation characteristics and their effects on mechanical properties, were rarely reported. Therefore, in this work the microstructure, retained austenite contents, mechanical properties and precipitation characteristics of the hot rolled TRIP steel containing Ti and Mo after bainitic transformation at different temperatures, were studied by using SEM, XRD and HRTEM. The results show that the bainitic transformation temperature has a significant effect on organizational morphology, retained austenite contents and mechanical properties of the TRIP steel. The optimal bainitic transformation temperature is 400 ℃, in which the retained austenite content and the balance of strength and ductility are 17.13\% and 23.87 GPa·%, respectively. In addition, through HRTEM analysis, it was observed that the larger (Ti, Mo)C carbides over 20 nm in size exhibited the relationship ((100)(Ti, Mo)C//(110)α- Fe,[011](Ti, Mo)C//[111]α- Fe) with ferrite matrix, and the smaller (Ti, Mo)C carbides less than 5 nm in size satisfied the Baker-Nutting orientation relationship: (100)(Ti, Mo)C//(100)α- Fe ,[011](Ti, Mo)C//[001]α- Fe.

Key words:  TRIP steel      (Ti, Mo)C      retained austenite      bainitic transformation     
Received:  18 December 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00745     OR     https://www.ams.org.cn/EN/Y2013/V29/I4/399

[1] Bouquerel J, Verbeken K, De Cooman B C.  Acta Mater, 2006; 54: 1443


[2] Scott C P, Drillet J.  Scr Mater, 2007; 56: 489

[3] Jun H J, Park S H, Choi S D, Park C G.  Mater Sci Eng, 2004; A379: 204

[4] Pereloma E V, Timokhina I B, Hodgson P D.  Mater Sci Eng, 1999; A273--275: 448

[5] Jacques P J, Furnemont Q, Lani F, Pardoen T, Delannay F.  Acta Mater, 2007; 55: 3681

[6] Lani F, Furnemont Q, Rompaey T V, Delannay F, Jacques P J, Pardoen T.  Acta Mater, 2007; 55: 3695

[7] Zaefferer S, Ohlert J, Bleck W.  Acta Mater, 2004; 52: 2765

[8] Dan W J, Li S H, Zhang W G, Lin Z Q.  Mater Des, 2008; 29: 604

[9] Santos D B, Barbosa R, Oliveira P P, Pereloma E V.  ISIJ Int, 2009; 49: 1592

[10] Ahn T H, Oh C S, Kim D H, Oh K H, Bei H, George E P, Hana H N.  Scr Mater, 2010; 63: 540

[11] Quidort D, Brechet Y J M.  Acta Mater, 2001; 49: 4161

[12] Lee H, Koh H J, Seo C H, Kim N J.  Scr Mater, 2008; 59: 83

[13] Zhang M, Li L, Fu R Y, Krizan D, Cooman B C.  Mater Sci Eng, 2006; A438--440: 296

[14] Saikaly W, Bano X, Issartel C, Rigaut G, Charrin L, Chara\"{\i A.  Metall Mater Trans, 2001; 32A: 1939

[15] Kammouni A, Saikaly W, Dumont M, Marteau C, Bano X, Chara\"{\i A.  Mater Sci Eng, 2009; A518: 89

[16] Timokhina I B, Hodgson P D, Pereloma E V.  Metall Mater Trans, 2004; 35A: 2331

[17] Pereloma E V, Russell K F, Miller M K, Timokhina I B.  Scr Mater, 2008; 58: 1078

[18] Pereloma E V, Timokhina I B, Miller M K, Hodgson P D.  Acta Mater, 2007; 55: 2587

[19] Lou Y Z, Liu D L, Mao X P, Bo M Z.  Iron Steel, 2010; 45: 70

(娄艳芝, 柳得橹, 毛新平, 柏明卓. 钢铁, 2010; 45: 70)

[20] Wang C J, Yong Q L, Sun X J, Mao X P, Li Z D, Yong X.  Acta Metall Sin, 2011; 47: 1541

(王长军, 雍岐龙, 孙新军, 毛新平, 李昭东, 雍兮. 金属学报, 2011; 47: 1541)

[21] Wang Z Q, Mao X P, Yang Z G, Sun X J, Yong Q L, Li Z D, Weng Y Q.  Mater Sci Eng, 2011; A529: 459

[22] Nagata M T, Speer J G, Matlock D K.  Metall Mater Trans, 2002; 33A: 3099

[23] Yong Q L.  Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 19

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 19)

[24] Hashimoto S, Ikeda S, Sugimoto K I, Miyake S.  ISIJ Int, 2004; 44: 1590

[25] Yi Y Y, Yang W Y, Li L F, Sun Z Q, Wang X T.  Acta Metall Sin, 2008; 44: 1292

(尹云洋, 杨王玥, 李龙飞, 孙祖庆, 王西涛. 金属学报, 2008; 44: 1292)

[26] Gladman T, Holmes B, McIvor I D.  Effect of Second Phase Particles on the Mechanical Properties of Steels. London: Iron and Steel Institute, 1971: 68

[27] Taran Y N, Novik V I.  Met Sci Heat Treat, 1971; 13: 818

[28] Tirumalasetty G K, Fang C M, Xu Q, Jansen J, Sietsma J, Huis M A, Zandbergen H W.Acta Mater, 2012; 60: 7160

[29] Gladman T.  Mater Sci Technol, 1999; 15: 30

[30] Ashby M F.  Philos Mag, 1970; 21: 399

[31] Ashby M F.  Strengthening Methods in Crystals. London: Applied Science Publishers Ltd, 1971: 137
[1] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[2] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[3] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[4] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[5] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[6] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[7] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[8] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[9] Lina WANG, Ping YANG, Kai LI, Feng'e CUI, Weimin MAO. Phase Transformation and Texture Evolution During Cold Rolling and α'-M Reversion in High Manganese TRIP Steel[J]. 金属学报, 2018, 54(12): 1756-1766.
[10] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[11] Long HUANG,Xiangtao DENG,Jia LIU,Zhaodong WANG. Relationship Between Retained Austenite Stability and Cryogenic Impact Toughness in 0.12C-3.0Mn Low Carbon Medium Manganese Steel[J]. 金属学报, 2017, 53(3): 316-324.
[12] Xiaolu GUI,Baoxiang ZHANG,Guhui GAO,Ping ZHAO,Bingzhe BAI,Yuqing WENG. FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS[J]. 金属学报, 2016, 52(9): 1036-1044.
[13] Zhenjia XIE,Chengjia SHANG,Wenhao ZHOU,Binbin WU. EFFECT OF RETAINED AUSTENITE ON DUCTILITY AND TOUGHNESS OF A LOW ALLOYED MULTI-PHASE STEEL[J]. 金属学报, 2016, 52(2): 224-232.
[14] Liansheng CHEN, Jianyang ZHANG, Yaqiang TIAN, Jinying SONG, Yong XU, Shihong ZHANG. EFFECT OF Mn PRE-PARTITIONING ON C PARTITIONING AND RETAINED AUSTENITE OF Q&P STEELS[J]. 金属学报, 2015, 51(5): 527-536.
[15] Xiaolin LI, Zhaodong WANG. EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL[J]. 金属学报, 2015, 51(5): 537-544.
No Suggested Reading articles found!