Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (11): 1299-1305    DOI: 10.3724/SP.J.1037.2012.00296
Current Issue | Archive | Adv Search |
STUDY ON THE PROCESS OF CTWW CO2 GAS SHIELDED WELDING
FANG Chenfu1), CHEN Zhiwei1), XU Guoxiang1), HU Qingxian1), ZHOU Hangyu2)
1)  School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003
2) Jiangsu Victor Hi-tech Welding Industry Co. LTD, Huaian 223100
Cite this article: 

FANG Chenfu CHEN Zhiwei XU Guoxiang HU Qingxian ZHOU Hangyu. STUDY ON THE PROCESS OF CTWW CO2 GAS SHIELDED WELDING. Acta Metall Sin, 2012, 48(11): 1299-1305.

Download:  PDF(895KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cable-type welding wire (CTWW) CO2 gas shielded arc welding, which uses CTWW as consumable electrode, is an innovative arc welding process with high quality, high efficiency and low consumption, thus having significant potential of wide application in industrial manufacturing. So far, however, there is lack of deep study on this new welding technology, hindering its promotion. In this paper, the process mechanism of CTWW CO2 gas shielded arc welding is studied through combining the experimental detection and numerical simulation. By using arc multi-information collection system, the characteristics of arc shape and behavior in CTWW CO2 gas shielded arc welding process is acquired. The photographs of weld without defect are obtained. Based on the test results, the mechanism of CTWW COgas shielded arc welding is explained. A finite element analysis model suitable to CTWW CO2 gas shielded arc welding is developed to simulate the temperature and stress field distribution. The results show that, there exist a unique bunchy electric arc in CTWW CO2 gas shielded arc welding, which is formed through multi--arc rotating and coupling, leading to arc heat concentration; the calculated weld cross section agrees well with the experimental data, validating the accuracy of established heat source model. When the heat input for per unit length in CTWW CO2 gas shielded arc welding is 2.9 times more than that in single welding wire (SWW) CO2 gas shielded arc welding, the weld penetration and width are 4 times and 1.7 times of those in SWW CO2 gas shielded welding, respectively. Under the same welding condition, the new welding process has a similar heat efficiency to submerged arc welding (SAW), but its weld penetration is greater, and its weld width, heat-affected zone width and peak temperature of thermal cycle are smaller. Besides, the residual stress field in CTWW CO2 gas shielded arc welding is close to that in SAW.

Key words:  high efficiency welding      CTWW      gas shielded arc welding      process mechanism      finite element analysis     
Received:  22 May 2012     
Fund: 

Supported by National Natural Science Foundation of China (Nos.51105182 and 51005106)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00296     OR     https://www.ams.org.cn/EN/Y2012/V48/I11/1299

[1] Wu C S, Zhang M X, Li K H, Zhang Y M. Acta Metall Sin, 2007; 43: 663

(武传松, 张明贤, 李克海, 张裕明. 金属学报, 2007; 43: 663)

[2] Harwig D, Gordon R. Proc 6th Int Conf Trends in Welding Research, OH: ASM International, 2003: 995

[3] Guan Q, Lin S Y. Proc New Fusion Weld Technol Appl, Beijing: China Welding Society, 2003: 11

(关 桥, 林尚扬. 熔焊新技术及应用研讨会论文集, 北京: 中国焊接学会, 2003: 11)

[4] Lahnsteiner R. Weld Rev Int, 1992; 2: 17

[5] Knapp I, Bartosik M. Weld Rev Int, 1998; 12: 25

[6] Ma X L, Hua X M, Wu Y X. Weld Join, 2007; (7): 27

(马晓丽, 华学明, 吴毅雄. 焊接, 2007; (7): 27)

[7] Yin S Y. Weld Join, 2006; (10): 7

(殷树言. 焊接, 2006; (10): 7)

[8] Didling L A, Michael S, Ladwing B. Weld Cut, 2002; 5: 18

[9] Feng Y H, Jin Q, Wang J P, Gu M L. Trans China Weld Inst, 2009; 30(6): 51

(冯曰海, 金秋, 王克鸿, 顾民乐. 焊接学报, 2009; 30(6): 51)

[10] Xu G X. PhD Thesis, Shandong University, Jinan, 2009

(胥国祥. 山东大学博士学位论文, 济南, 2009)

[11] Li P L, Lu H. Trans China Weld Inst, 2011; 32(6): 13

(李培麟, 陆 皓. 焊接学报, 2011; 32(6): 13)

[12] Zhang P Y, Gao C R, Zhu F X. Weld Technol, 2009; 38(6): 23

(张朋彦, 高彩茹, 朱伏先. 焊接技术, 2009; 38(6): 23)

[13] Chen S J, Wang J, Wang H X, Lu Z Y, Yin S Y, Bai S J. Trans China Weld Inst, 2005; 26(3): 45

(陈树君, 王 军, 王会霞, 卢振洋, 殷树言, 白韶军. 焊接学报, 2005; 26(3): 45)

[14] Hua A B, Yin S Y, Chen S J, Bai S J, Zhang X L. Chin J Mech Eng, 2010; 46(16): 142

(华爱兵, 殷树言, 陈树君, 白韶军, 张晓亮. 机械工程学报, 2010; 46(16): 142)

[15] Lu Z Y, Huang P F, Jiang G J, Yin S Y. Weld Join, 2006; (3): 16

(卢振洋, 黄鹏飞, 蒋观军, 殷树言. 焊接, 2006; (3): 16)

[16] Zhou H Y. Master Thesis, Jiangsu University of Science and Technology, Zhenjiang, 2012

(周航宇. 江苏科技大学硕士学位论文, 镇江, 2012)

[17] Hu X G. Master Thesis, Jiangsu University of Science and Technology, Zhenjiang, 2012

(胡小光. 江苏科技大学硕士学位论文, 镇江, 2012)

[18] Wang H S. Master Thesis, Jiangsu University of Science and Technology, Zhenjiang, 2012

(王海松. 江苏科技大学硕士学位论文, 镇江, 2012)

[19] Fang C F. PhD Thesis, Beijing University of Technology, 2005

(方臣富. 北京工业大学博士学位论文, 2005)

[20] Fang C F, Chen S J, Liu J, Yin S Y, Song Y L, Li H, Hou R S,Wen Y P. Trans China Weld Inst, 2005; 26(12): 1

(方臣富, 陈树君, 刘嘉, 殷树言, 宋永伦, 李桓, 侯润石, 温永平. 焊接学报, 2005; 26(12): 1)

[21] Fang C F, Ye Q L, Song Y L, Li H. Trans China Weld Inst, 2008; 29(4): 1

(方臣富, 叶轻凌, 宋永伦, 李桓. 焊接学报, 2008; 29(4): 1)

[22] Wu C S. Welding Thermal Process and Weld Pool Behaviour. Beijing: China Machine Press, 2007: 20

(武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2007: 20)

[23] Zhang M X. Master Thesis, Shandong University, Jinan, 2006

(张明贤. 山东大学硕士学位论文, 济南, 2006)

[24] Zhang M X, Wu C S, Li K H, Zhang Y M. Trans China Weld Inst, 2007; 28(2): 34

(张明贤, 武传松, 李克海, 张裕明. 焊接学报, 2007; 28(2): 34)

[25] Zhang W Y. Welding Metallurgy. Beijing: China Machine Press, 2002: 100

(张文钺. 焊接冶金学. 北京: 机械工业出版社, 2002: 100)

[1] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[2] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[3] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
[4] XU Hengdong ZHAO Haiyan S¨orn Ocylok Igor Kelbassa. STUDY ON CRACKS IN LASER DIRECT–CLADDED TITANIUM LAYER ON LOW CARBON STEEL[J]. 金属学报, 2012, 48(2): 142-147.
[5] LANG Wenchang XIAO Jinquan GONG Jun SUN Chao HUNG Rongfang WEN Lishi. INFLUENCE OF AXISYMMETRIC MAGNETIC FIELD ON CATHODE SPOTS MOVEMENT IN ARC ION PLATING[J]. 金属学报, 2010, 46(3): 372-379.
[6] LU Shanping DONG Wenchao LI Dianzhong LI Yiyi. HIGH EFFICIENCY WELDING PROCESS FOR STAINLESS STEEL MATERIALS[J]. 金属学报, 2010, 46(11): 1347-1364.
[7] CUI Hang CHEN Huaining CHEN Jing HUANG Chunling WU Changzhong. FEA OF EVALUATING MATERIAL YIELD STRENGTH AND STRAIN HARDENING EXPONENT USING A SPHERICAL INDENTATION[J]. 金属学报, 2009, 45(2): 189-194.
[8] ;. Finite Element Analysis on Compressive Property of a New Type of Porous Magnesium[J]. 金属学报, 2008, 44(2): 237-242 .
[9] Guo-Dong ZHANG. Finite Element Analysis of High Temperature Piping Creep for Considering the Effect of Inner Pressure and Welding Residual Stress[J]. 金属学报, 2008, 44(10): 1271-1276 .
[10] ;. SIMULATION OF STRESS IN REINFORCEMENTS AND STRESS-STRAIN CURVE OF SiC PARTICULATE Al-2618 MATRIX COMPOSITE[J]. 金属学报, 2007, 43(8): 863-867 .
[11] ChuanSong Wu. STUDY ON THE PROCESS MECHANISOM OF HIGH-SPEED ARC WELDING DE-GMAW[J]. 金属学报, 2007, 43(6): 663-667 .
[12] Li Rong. Finite-element modeling of pure magnesium swaging[J]. 金属学报, 2006, 42(4): 394-398 .
[13] JING Hongyang; HUO Lixing; ZHANG Yufeng(Tianjin Universitx; Tianjin 300072);TO YODA Masao; FUJITA Asako(Osaka University Japan 565) (Manuscript received 1 995-04-04). EFFECT OF YIELD RATIO ON FRACTURE TOUGHNESS FOR HIGH STRENGTH STEEL[J]. 金属学报, 1996, 32(3): 265-268.
[14] LI Huan;LI Jiabao;SUN Lizhi;WANG Zhongguang(State Key Laboratory for Fatigue and Fracture of Materials;Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)(Manuscript received 1996-05-10;in revised form 1996-09-23). EFFECT OF LOW TEMPERATURE TREATMENT ON RESIDUAL STRESSES IN SiC_p/6061Al COMPOSITE[J]. 金属学报, 1996, 32(12): 1279-1284.
[15] HUANG Zheng;YAO Mei Institute of Physics; Academia Sinica; Beijing Harbin Institute of Technology Institute of Physics;Academia Sinica;Beijing 100080. MODEL OF CLEAVAGE CRACK PROPAGATION ACROSS BOUNDARY[J]. 金属学报, 1990, 26(1): 53-57.
No Suggested Reading articles found!