Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 480-484    DOI: 10.3724/SP.J.1037.2011.00674
论文 Current Issue | Archive | Adv Search |
EFFECTS OF ELECTRICAL CURRENT AND ITS POLARITY ON THE PROPERTIES OF FRICTION AND WEAR OF COPPER-IMPREGNATED METALLIZED CARBON
WANG Yian, LI Jinxu, QIAO Lijie
Corrosion and Protection Center, Key Laboratory for Environment Fracture Laboratory (MOE), University of Science and Technology Beijing, Beijing 100083
Cite this article: 

WANG Yian, LI Jinxu, QIAO Lijie. EFFECTS OF ELECTRICAL CURRENT AND ITS POLARITY ON THE PROPERTIES OF FRICTION AND WEAR OF COPPER-IMPREGNATED METALLIZED CARBON. Acta Metall Sin, 2012, 48(4): 480-484.

Download:  PDF(779KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Copper-impregnated metallized carbon has been widely used in maglev vehicles and high-speed railway trains due to its excellent electrical conductivity and high mechanical strength. The wear of copper-impregnated metallized carbon has aroused wide concern. To decrease the cost of maintenance and keep trains running safely, a better understanding of the wear mechanisms is needed. In this work, the effects of electrical current and its polarity on sliding friction and wear of copper-impregnated metallized carbon against Cr-Zr-Cu alloy rings were studied on UMT-2 tribometer with a brush-on-ring configuration. SEM and EDS were used to observe the morphologies of the worn surfaces and analyze the compositions of worn surfaces. The results showed that the wear mass loss increased with the rising of electrical current, the friction coefficient with electrical current was lower than that without electrical current. The wear mass losses of positive brush specimens were higher than those of negative brush specimens. It was found that the surface damage of the worn surface of brush specimens became more serious with greater electrical current, the positive brush specimen suffered a heavier oxidation than that of negative brush specimen. Abrasive wear, adhesive wear and arc erosion were the dominant mechanisms during the electrical sliding process.
Key words:  electrical current      polarity      friction      wear      oxidation     
Received:  31 October 2011     
ZTFLH: 

TG356.16

 
Fund: 

National Basic Research Program of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00674     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/480

[1] Kubo S, Tsuchiya H, Ikeuchi J.  Q Rep RTRI, 1997; 38: 76

[2] Qu C Y, Lu Z K.  Carbon, 2008; 3: 45

    (曲春浴, 陆宗奎. 炭素, 2008; 3: 45)

[3] Correia J B, Davies H A, Sellars C M.  Acta Mater, 1997; 45: 177

[4] Jia S G, Liu P, Ren F Z, Tian B H, Zheng M S, Zhou G S.  Mater Sci Eng,2005; A398: 262

[5] Batra I S, Dey G K, Kulkarni U D, Banerjee S.  J Nucl Mater,2001; 299: 91

[6] Yasar I, Canakci A, Arslan F.  Tribology Int, 2007; 40: 1381

[7] Wang G M, Zhang Y Z, Du S M, Liu W M.  Tribology, 2007; 27: 346

    (王观民, 张永振, 杜三明, 刘维民. 摩擦学学报, 2007; 27: 346)

[8] Yang X W, Zhang Y Z, Qiu M, Du S M.  Tribology, 2007; 27: 25

    (杨晓伟, 张永振, 邱明, 杜三明.摩擦学学报, 2007; 27: 25)

[9] Dow T A, Kannel J W.  Wear, 1982; 79: 93

[10] Jia S G, Liu P, Ren F Z, Tian B H, Zheng M S, Zhou G S. Wear, 2007; 262: 772

[11] Ma X C, He G Q, He D H, Chen C S, Hu Z F.  Wear, 2008; 265: 1087

[12] Zheng R G, Zhan Z J, Wang W K.  Wear, 2010; 268: 72

[13] Tu C J, Chen Z H, Chen D, Yan H G, He F Y.  Trans Nonferr Met Soc China, 2008; 18: 1157

[14] Kubo S, Kato K.  Wear, 1998; 216: 172

[15] Dong L, Chen G X, Zhu M H, Zhou Z R.  Wear, 2007; 263: 598

[16] Kotake S, Sakurada H, Suzuki T, Suzuki Y.  Tribology Int,2008; 41: 44

[17] Kogut L, Komvopoulos K.  J Appl Phys, 2003; 94: 3153

[18] Kogut L.  J Appl Phys, 2005; 97: 103723

[19] Nagasawa H, Kato K.  Wear, 1998; 216: 179

[20] Bryant M D, Wang J P.  Wear, 1995; 181-183: 668

[21] Bhushan B, Davis R E, Gordon M.  Thin Solid Films, 1985; 123: 93

[22] Chen G X, Li F X, Dong L, Zhu M H, Zhou Z R.  Tribology Int,2009; 42: 934

[23] Ding T, Chen G X, Wang X, Zhu M H, Zhang W H, Zhou W X. Tribology Int, 2011; 44: 437

[24] Hu Z L, Chen Z H, Xia J T.  Wear, 2008; 264: 11

[25] Gershman J S, Bushe N A.  Surf Coat Technol, 2004; 186: 405

[26] Dong L.  PhD Thesis, Southwest Jiaotong University, Chengdu, 2008

     (董霖. 西南交通大学博士论文, 成都, 2008)

[27] Chen Z Z.  Dynamics of Lighting by Ionized Gas. Beijing:Science Press, 1996: 44

     (陈宗柱. 电离气体发光动力学. 北京: 科学出版社, 1996: 44)

[28] Tu C J.  PhD Thesis, Hunan University, Changsha, 2009

     (涂川俊. 湖南大学博士论文, 长沙, 2009)

[29] Neumark D M, Lykke K R, Andersen T, Lineberger W C.  Phys Rev,1985; 32A: 1890

[30] Wang J W, Zhong S H.  Prog Chem, 1998; 10: 374

     (王建伟, 钟顺和. 化学进展, 1998; 10: 374)
[1] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[2] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[3] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[4] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[5] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[6] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[7] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[8] HU Min, ZHOU Shengyu, GUO Jingyuan, HU Minghao, LI Chong, LI Huijun, WANG Zumin, LIU Yongchang. Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys[J]. 金属学报, 2023, 59(10): 1346-1354.
[9] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[10] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[11] LI Huizhao, WANG Caimei, ZHANG Hua, ZHANG Jianjun, HE Peng, SHAO Minghao, ZHU Xiaoteng, FU Yiqin. Research Progress of Friction Stir Additive Manufacturing Technology[J]. 金属学报, 2023, 59(1): 106-124.
[12] CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere[J]. 金属学报, 2022, 58(8): 1083-1092.
[13] XIE Leipeng, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Effects of Processing on Microstructures and Properties of FGH4097 Superalloy[J]. 金属学报, 2022, 58(8): 992-1002.
[14] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[15] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
No Suggested Reading articles found!