|
|
PREPARATION, STRUCTURE AND MAGNETIC PROPERTIES OF SmCo5 NANOPARTICLES AND NANOFLAKES |
LIU Rongming1,2, YUE Ming1, ZHANG Dongtao1,Liu Weiqiang1, ZHANG Jiuxing1 |
1. Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124
2. State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article:
LIU Rongming, YUE Ming, ZHANG Dongtao,Liu Weiqiang, ZHANG Jiuxing. PREPARATION, STRUCTURE AND MAGNETIC PROPERTIES OF SmCo5 NANOPARTICLES AND NANOFLAKES. Acta Metall Sin, 2012, 48(4): 475-479.
|
Abstract Surfactant-assisted high energy ball milling technique is a new method of producing magnetic nanoparticles. In this study, permanent magnetic SmCo5 nanoparticles and nanoflakes with high room-temperature coercivity values and narrow particle size distributions were produced by this technology and a subsequent size-selection process. The SmCo5 nanoparticles with average particle sizes of 9.8 and 47.5 nm, exhibited room-temperature coercivity values of 6.8×104 and 7.3×105 A/m, respectively, while the SmCo5 nanoflakes, with the mean particle size of about 1.4 μm and average thickness of 75 nm, showed excellent permanent magnetic properties with an obvious c-axis crystal texture, a strong magnetic anisotropy and high coercivity values of 5.5×105 and 1.6×106 A/m in their easy-axis and hard-axis directions, respectively. The coercivity values of SmCo5 nanoparticles and nanoflakes exhibited a significant particle size dependance effect.
|
Received: 17 October 2011
|
|
Fund: National Natural Science Foundation of China |
[1] Chakka V M, Altuncevahir B, Jin Z Q, Li Y, Liu J P. J Appl Phys, 2006; 99: 08E912[2] Wang Y P, Li Y, Rong C B, Liu J P. Nanotechnology, 2007; 18: 465701[3] Yue M, Wang Y P, Poudyal N, Rong C B. J Appl Phys,2009; 105: 07A708[4] Shen Y, Huang M Q, Higgins A K, Liu S, Horwath J C, Chen C H. J Appl Phys, 2010; 107: 09A722[5] Akdogan N G, Hadjipanayis G C, Sellmyer D J. IEEE Trans Magn,2009; 45: 4417[6] Akdogan N G, Hadjipanayis G C, Sellmyer D J. J Appl Phys,2009; 105: 07A710[7] Cha H G, Kim Y H, Kim C W, Kwon H W, Kang Y S. J Phys Chem,2007; C111: 1219[8] Gabay A M, Akdogan N G, Marinescu M, Hadjipanayis G C. J Phys: Condens Matter, 2010; 22: 164213[9] Cui B Z, Gabay A M, Li W F, Marinescu M, Liu J F, Hadjipanayis G C. J Appl Phys, 2010; 107: 09A721[10] Zheng L Y, Cui B Z, Akdogan N G, Marinescu M, Hadjipanayis G C. J Alloy Compd, 2010; 504: 391[11] Cui B Z, Li W F, Hadjipanayis G C. Acta Mater,2011;59: 563[12] Akdogan N G, Hadjipanayis G C, Sellmyer D J. Nanotechnology,2010; 21: 295705[13] Jones N. Nature, 2011; 472: 22[14] Li S X, Zhang J C, Shen Y, Ni B, Zhang J G. J Mater Sci Technol, 2006; 22: 659[15] Jian Z G, Liu W Q, Cao A L, Zhang D T, Yue M, Zhang J X. Chin J Rare Met, 2009; 33: 821 (菅志刚, 刘卫强, 曹爱利, 张东涛, 岳明, 张久兴. 稀有金属, 2009; 33: 821)[16] Liu S L,Yu Y Y, Teng R H, Xu J R. Acta Metall Sin, 1998; 34: 1223 (刘思林, 于英仪, 滕荣厚, 徐教仁. 金属学报, 1998; 34: 1223)[17] Cao W M, Chen H, Shi X H, Zhu L J, Ji X B, Zhang L, Yin R H. Acta Metall Sin, 2008; 44: 445 (曹为民, 陈浩, 石新红, 朱律均, 姬学彬, 张磊, 印仁和.金属学报, 2008; 44: 445)[18] Liu X M, Fu S Y, Xiao H M, Li Y Q. Acta Metall Sin, 2006; 42: 497 (刘献明, 付绍云, 肖红梅, 李元庆. 金属学报, 2006; 42: 497)[19] http://zjyqyb.cnpowder.com.cn/news/19378.html[20] Liu R M, Yue M, Liu W Q, Zhang D T, Zhang J X. Appl Phys Lett,2011; 99: 162510[21] Liu R M, Yue M, Liu W Q, Zhang D T, Zhang J X, Guo Z H, Li W. IEEE Trans Nanotechnol, doi: 10.1109/TNANO.2012.2184299[22] Coey J M D. J Magn Magn Mater, 1995; 140-144: 1041[23] Ding J, Mc Cormick P G, Street R. J Alloy Compd, 1993; 191: 197[24] Strnat K J. In: Wehfarth E P, Buschow K H eds., Ferromagnetic Materials. Elsevier: Amsterdam, 1988; 4: 131[25] Hadjipanayis G C. J Magn Magn Mater, 1999; 200: 373 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|