Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 475-479    DOI: 10.3724/SP.J.1037.2011.00643
论文 Current Issue | Archive | Adv Search |
PREPARATION, STRUCTURE AND MAGNETIC PROPERTIES OF SmCo5 NANOPARTICLES AND NANOFLAKES
LIU Rongming1,2, YUE Ming1, ZHANG Dongtao1,Liu Weiqiang1, ZHANG Jiuxing1
1. Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124
2. State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article: 

LIU Rongming, YUE Ming, ZHANG Dongtao,Liu Weiqiang, ZHANG Jiuxing. PREPARATION, STRUCTURE AND MAGNETIC PROPERTIES OF SmCo5 NANOPARTICLES AND NANOFLAKES. Acta Metall Sin, 2012, 48(4): 475-479.

Download:  PDF(662KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Surfactant-assisted high energy ball milling technique is a new method of producing magnetic nanoparticles. In this study, permanent magnetic SmCo5 nanoparticles and nanoflakes with high room-temperature coercivity values and narrow particle size distributions were produced by this technology and a subsequent size-selection process. The SmCo5 nanoparticles with average particle sizes of 9.8 and 47.5 nm, exhibited room-temperature coercivity values of 6.8×104 and 7.3×105 A/m, respectively, while the SmCo5 nanoflakes, with the mean particle size of about 1.4 μm and average thickness of 75 nm, showed excellent permanent magnetic properties with an obvious c-axis crystal texture, a strong magnetic anisotropy and high coercivity values of 5.5×105 and 1.6×106 A/m in their easy-axis and hard-axis directions, respectively. The coercivity values of SmCo5 nanoparticles and nanoflakes exhibited a significant particle size dependance effect.
Key words:  SmCo5      nanoparticle      nanoflake      surfactant      high energy ball milling      magnetic property     
Received:  17 October 2011     
ZTFLH: 

TM277

 
Fund: 

National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00643     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/475

[1] Chakka V M, Altuncevahir B, Jin Z Q, Li Y, Liu J P. J Appl Phys, 2006; 99: 08E912

[2] Wang Y P, Li Y, Rong C B, Liu J P.  Nanotechnology, 2007; 18: 465701

[3] Yue M, Wang Y P, Poudyal N, Rong C B.  J Appl Phys,2009; 105: 07A708

[4] Shen Y, Huang M Q, Higgins A K, Liu S, Horwath J C, Chen C H. J Appl Phys, 2010; 107: 09A722

[5] Akdogan N G, Hadjipanayis G C, Sellmyer D J.  IEEE Trans Magn,2009; 45: 4417

[6] Akdogan N G, Hadjipanayis G C, Sellmyer D J.  J Appl Phys,2009; 105: 07A710

[7] Cha H G, Kim Y H, Kim C W, Kwon H W, Kang Y S.  J Phys Chem,2007; C111: 1219

[8] Gabay A M, Akdogan N G, Marinescu M, Hadjipanayis G C. J Phys: Condens Matter, 2010; 22: 164213

[9] Cui B Z, Gabay A M, Li W F, Marinescu M, Liu J F, Hadjipanayis G C. J Appl Phys, 2010; 107: 09A721

[10] Zheng L Y, Cui B Z, Akdogan N G, Marinescu M, Hadjipanayis G C. J Alloy Compd, 2010; 504: 391

[11] Cui B Z, Li W F, Hadjipanayis G C.  Acta Mater,2011;59: 563

[12] Akdogan N G, Hadjipanayis G C, Sellmyer D J.  Nanotechnology,2010; 21: 295705

[13] Jones N.  Nature, 2011; 472: 22

[14] Li S X, Zhang J C, Shen Y, Ni B, Zhang J G.  J Mater Sci Technol, 2006; 22: 659

[15] Jian Z G, Liu W Q, Cao A L, Zhang D T, Yue M, Zhang J X. Chin J Rare Met, 2009; 33: 821

     (菅志刚, 刘卫强, 曹爱利, 张东涛, 岳明, 张久兴. 稀有金属, 2009; 33: 821)

[16] Liu S L,Yu Y Y, Teng R H, Xu J R.  Acta Metall Sin, 1998; 34: 1223

     (刘思林, 于英仪, 滕荣厚, 徐教仁. 金属学报, 1998; 34: 1223)

[17] Cao W M, Chen H, Shi X H, Zhu L J, Ji X B, Zhang L, Yin R H. Acta Metall Sin, 2008; 44: 445

     (曹为民, 陈浩, 石新红, 朱律均, 姬学彬, 张磊, 印仁和.金属学报, 2008; 44: 445)

[18] Liu X M, Fu S Y, Xiao H M, Li Y Q.  Acta Metall Sin, 2006; 42: 497

 (刘献明, 付绍云, 肖红梅, 李元庆. 金属学报, 2006; 42: 497)

[19] http://zjyqyb.cnpowder.com.cn/news/19378.html

[20] Liu R M, Yue M, Liu W Q, Zhang D T, Zhang J X.  Appl Phys Lett,2011; 99: 162510

[21] Liu R M, Yue M, Liu W Q, Zhang D T, Zhang J X, Guo Z H, Li W. IEEE Trans Nanotechnol, doi: 10.1109/TNANO.2012.2184299

[22] Coey J M D.  J Magn Magn Mater, 1995; 140-144: 1041

[23] Ding J, Mc Cormick P G, Street R.  J Alloy Compd, 1993; 191: 197

[24] Strnat K J. In: Wehfarth E P, Buschow K H eds.,  Ferromagnetic Materials. Elsevier: Amsterdam, 1988; 4: 131

[25] Hadjipanayis G C.  J Magn Magn Mater, 1999; 200: 373
[1] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[2] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[3] GUO Yujing, BAO Haoming, FU Hao, ZHANG Hongwen, LI Wenhong, CAI Weiping. Ultrasonic Emulsification Preparation of Metallic Rubidium Sol and Its Ignition Performance[J]. 金属学报, 2022, 58(6): 792-798.
[4] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[5] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[6] Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys[J]. 金属学报, 2019, 55(3): 369-375.
[7] Ran TAO, Yutao ZHAO, Gang CHEN, Xizhou KAI. Microstructure and Properties of In-Situ ZrB2 np/AA6111 Composites Synthesized Under an Electromagnetic Field[J]. 金属学报, 2019, 55(1): 160-170.
[8] Jun HUANG, Haiwen LUO. Influence of Annealing Process on Microstructures, Mechanical and Magnetic Properties of Nb-Containing High-Strength Non-Oriented Silicon Steel[J]. 金属学报, 2018, 54(3): 377-384.
[9] Yachao SUN, Minggang ZHU, Rui HAN, Xiaoning SHI, Nengjun YU, Liwei SONG, Wei LI. Magnetic Viscosity of Anisotropic Rare Earth Permanent Films[J]. 金属学报, 2018, 54(3): 457-462.
[10] Jianxue LIU, Wenjun XI, Neng LI, Shujie LI. Effect of Interfacial Energy on Distribution of Nanoparticle in the Melt During the Preparation of Fe-Based ODS Alloys by Thermite Reaction[J]. 金属学报, 2017, 53(8): 1011-1017.
[11] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[12] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[13] Haoran ZHENG, Minfang CHEN, Zhen LI, Chen YOU, Debao LIU. Effects of MgO Modified HA Nanoparticles on the Microstructure and Properties of Mg-Zn-Zr/m-HA Composites[J]. 金属学报, 2017, 53(10): 1364-1376.
[14] Jing BAI,Ze LI,Zhen WAN,Xiang ZHAO. A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys[J]. 金属学报, 2017, 53(1): 83-89.
[15] Yue CUI,Wenjun XI,Xing WANG,Shujie LI. Al2O3 NANOPARTICLE AND NiAl REINFORCED Fe-BASED ODS ALLOYS SYNTHESIZED BY THERMITE REACTION[J]. 金属学报, 2015, 51(7): 791-798.
No Suggested Reading articles found!