Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (5): 561-568    DOI: 10.3724/SP.J.1037.2011.00536
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION AND FEM ANALYSIS OF [111] ORIENTED SINGLE CRYSTAL OF A NICKEL-BASED SUPERALLOY DURING TENSILE CREEP
ZHANG Shu1,2, TIAN Sugui1, YU Huichen3, YU Lili1, YU Xingfu1
1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2. School of Mechanical Engineering, Shenyang University of Chemical Technology, Shenyang 110142
3. Beijing Institute of Aeronautical Material, Beijing 100095
Cite this article: 

ZHANG Shu, TIAN Sugui, YU Huichen, YU Lili, YU Xingfu. MICROSTRUCTURE EVOLUTION AND FEM ANALYSIS OF [111] ORIENTED SINGLE CRYSTAL OF A NICKEL-BASED SUPERALLOY DURING TENSILE CREEP. Acta Metall Sin, 2012, 48(5): 561-568.

Download:  PDF(3795KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The distribution of von Mises stress and strain energy density in regions near interfaces of γ/γ' phases was calculated by an elastic--plastic stress--strain finite element method (FEM), and the influences of applied stress on the von Mises stress distribution and coarsening regularity of γ' phase in a [111] oriented single crystal nickel--based superalloy were also investigated. The results show that, after heat treated, the microstructure of the [111] oriented single crystal superalloy consists of a cubical γ' phase embedded coherently in γ matrix, and the cubical γ' phase is regularly arranged along <100> direction. When tensile stress is applied along [111] direction, compared to (010)γ' plane, larger expanding lattice strain occurs on (100)γ' and (001)γ' planes under the action of principal stress component, which may trap Al, Ti atoms with bigger radius to promote γ' phase directionally growing along [010] and [100] orientations on (010) plane, this is thought to be the main reason of γ' phase grown directionally into a mesh--like rafted structure along (010) plane.
Key words:  [111] orientation single crystal      nickel-based superalloy      microstructure evolution      creep, FEM analysis     
Received:  23 August 2011     
Fund: 

National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00536     OR     https://www.ams.org.cn/EN/Y2012/V48/I5/561

[1] Peng Z F, Yan Y H.  Acta Metall Sin, 1997; 9: 1147

    (彭志方, 严演辉. 金属学报, 1997; 9: 1147)

[2] Sass V, Glatzel U, Feller--Kniepmeier M.  Superalloy 1996, Metals Park: TMS, 1996: 283

[3] Tien J K, Copley S M.  Metall Trans, 1971; 2: 215

[4] Tien J K, Copley S M.  Metall Trans, 1971; 2: 543

[5] Liu J L, Jin T, Sun X F.  Mater Sci Eng, 2008; A479: 277

[6] Yue Z F, Lu Z Z.  Mater Sci Technol, 1998; 6(2): 48

    (岳珠峰, 吕震宙. 材料科学与工艺, 1998; 6(2): 48)

[7] Pollock T M, Argon A S.  Acta Metall Mater, 1994; 42: 1859

[8] Pollock T M, Argon A S.  Acta Metall Mater, 1992; 40: 1

[9] Muller L, Glatzel U, Feller--Kniepmeier M.  Acta Metall Mater, 1992; 40: 1321

[10] Glatzel U, Feller--Kniepmeier M.  Scr Metall, 1989; 23: 1839

[11] Yang Y Q, Zhou L, Zhang J Y.  J Shenyang Ligong Univ, 2009; 28(3): 42

     (杨永清, 周丽, 张嘉易. 沈阳理工大学学报, 2009; 28(3): 42)

[12] Wang M G.  PhD Thesis, Shenyang University of Technology, 2010

     (王明罡. 沈阳工业大学博士学位论文, 2010)

[13] Rao S Q, Meng C L, Wu B.  J Aerosp Power, 1998; 13(1): 30

     (饶寿期, 孟春玲, 吴斌. 航空动力学报, 1998; 13(1): 30)

[14] Rao S Q.  Aircr Eng, 2004; 30(1): 10

     (饶寿期. 航空发动机, 2004; 30(1): 10)

[15] Meng C L, Wu B, Rao S Q.  J Beijing Univ Aeronaut Astronaut, 1998; 24(1): 21

     (孟春玲, 吴斌, 饶寿期. 北京航空航天大学学报, 1998; 24(1): 21)

[16] Tian S G, Chen C R, Zhang J H.  Mater Sci Technol, 2001; 17: 736

[17] Zhou L, Li S X, Chen C R.  Z Metallkd, 2002; 93: 315

[18] Tian S G, Zhang J H, Yang H C, Hu Z Q.  Mater Sci Technol, 2000; 16: 451

[19] Tian S G, Zhou H H, Zhang J H.  Acta Metall Sin, 1998; 34: 1261

     (田素贵, 周惠华, 张静华. 金属学报, 1998; 34: 1261)

[20] Zhang S, Tian S G.  Acta Metall Sin, 2011; 47: 61

     (张姝, 田素贵. 金属学报, 2011; 47: 61)

[21] Tian S G, Zhang J H, Yang H C, Hu Z Q.  Mater Sci Technol, 2001; A279: 160
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[6] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[7] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[8] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[9] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[10] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[11] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[12] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[13] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[14] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[15] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
No Suggested Reading articles found!