Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 887-892    DOI: 10.3724/SP.J.1037.2011.00176
论文 Current Issue | Archive | Adv Search |
INVESTIGATION OF MICROSTRUCTURE OF OXIDE LAYERS FORMED INITIALLY ON Zr-4 ALLOY
DU Chenxi1), PENG Jianchao2), LI Hui1), ZHOU Bangxin1)
1) Institute of Materials, Shanghai University, Shanghai 200072
2) Laboratory for Microstructures, Shanghai University, Shanghai 200444
Cite this article: 

DU Chenxi PENG Jianchao LI Hui ZHOU Bangxin. INVESTIGATION OF MICROSTRUCTURE OF OXIDE LAYERS FORMED INITIALLY ON Zr-4 ALLOY. Acta Metall Sin, 2011, 47(7): 887-892.

Download:  PDF(1135KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Zr--4 specimens with coarse grain of 0.2-0.8 mm were prepared to investigate the anisotropic growth of oxide layers formed initially on the grain surface with different orientations during corrosion tests in autoclave at 360 ℃/18.6 MPa in 0.01 mol/L LiOH aqueous after 5 h exposure. SEM, EBSD and HRTEM were adopt to measure the thickness of oxide layers, to determine the grain orientation of the matrix surface and to investigate the microstructure of oxide layers. The thicknesses of oxide layers formed on different grains varied in the range of 376-455 nm. The thickest oxide layers were detected on the grains with the orientations nearby basal plane (0001) and prismatic plane (0110). The oxide layers have monoclinic, cubic, tetragonal crystal structures. Besides the thickness difference of oxide layers, the crystal structure and misorientation of nano-grains in oxide layers formed on different grains were also significantly different, and the most complicated oxide layer was formed on the grain with orientation nearby (0001) plane. Such kind of microstructure has more crystal defects, and larger ability for promoting the diffusion of oxygen ions and the growth of oxide layer.
Key words:  Zr-4 alloy      corrosion      oxide layer      anisotropic oxidation      microstructure     
Received:  29 March 2011     
ZTFLH: 

TG174

 
Fund: 

Supported by National Natural Science Foundation of China (No.50971084) and Shanghai Leading Academic Discipline Project (No.S30107})

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00176     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/887

[1] Zhou B X, Peng J C, Yao M Y, Li Q, Xia S, Du C X, Xu G. J ASTM Int, 8(1), DOI: 10.1520/JAI 102951

[2] Ploc R A. J Nucl Mater, 1982; 110: 59

[3] Ploc R A. J Nucl Mater, 1983; 115: 110

[4] Ploc R A. J Nucl Mater, 1983; 113: 75

[5] Wadman B, Andren H O, Falk L K L. Colloque De Physique, 1989; C8: 303

[6] Wadman B, Andren H O. Zirconium in the Nuclear Industry: 9th International Symposium, ASTM STP 1132, West Conshohocken PA: ASTM International, 1991: 461

[7] Kim H G, Kim T H, Jeong Y H. J Nucl Mater, 2002; 306: 44

[8] Bakradze G, Jeurgens P H, Mittemeijer J. Surf Interface Anal, 2010; 42: 588

[9] Charquet D, Tricot R, Wadier J F. Zirconium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, West Conshohocken PA: ASTM International, 1989: 374

[10] Li B, Allnatt A R, Zhang C S, Norton P R. Surf Sci, 1995; 330: 2

[11] Li C, Zhou B X. Nucl Power Eng, 1994; 15: 152

(李 聪, 周邦新. 核动力工程, 1994; 15: 152)

[12] Peachey L D. J Biophysic Biohem Cytol, 1958; 4: 233

[13] Pemsler J P. J Electrochem Soc, 1958; 105: 315

[14] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng, 2006; 35: 1009

(周邦新, 李 强, 刘文庆, 姚美意, 褚于良. 稀有金属材料与工程, 2006; 35: 1009)

[15] Ploc R A. J Nucl Mater, 1968; 28: 48

[16] Zhou B X, Li Q, YaoMY, Liu WQ, Chu Y L. Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505, West Conshohocken PA: ASTM International, 2009: 360

[17] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. Corros Prot, 2009; 30: 589

(周邦新, 李强, 姚美意, 刘文庆, 褚于良. 腐蚀与防护, 2009; 30: 589)

[18] Park J Y, KimH G, Jeong Y H, Jeong Y H. J NuclMater, 2004; 335: 433

[19] Yilmazbayhan A, Motta A T, Comstock R J, Sabol G P, Lai B, Cai Z H. J Nucl Mater, 2004; 324: 6
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[11] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[12] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[13] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[14] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!