Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 893-898    DOI: 10.3724/SP.J.1037.2011.00276
论文 Current Issue | Archive | Adv Search |
OXIDATION BEHAVIOR OF THE β-Nb PHASE PRECIPITATED IN Zr-2.5Nb ALLOY
LI Qiang, LIANG Xue, PENG Jianchao, LIU Renduo, YU Kang, ZHOU Bangxin
Laboratory for Microstructures, Shanghai University, Shanghai 200444
Cite this article: 

LI Qiang LIANG Xue PENG Jianchao LIU Renduo YU Kang ZHOU Bangxin. OXIDATION BEHAVIOR OF THE β-Nb PHASE PRECIPITATED IN Zr-2.5Nb ALLOY. Acta Metall Sin, 2011, 47(7): 893-898.

Download:  PDF(1301KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion behavior for Zr--2.5Nb specimens heat--treated at 580 ℃ for 50 h after $\beta$--quenching
and cold rolling has been investigated in 500 ℃/10.3 MPa superheated steam by autoclave tests. HRTEM
equipped with EDS was employed to investigate the matrix microstructure and the oxidation behavior of the
$\beta$--Nb second phase particles (SPPs). It was found that many $\beta$--Nb SPPs with small sizes ($<$100 nm)
randomly precipitated after heat treating at 580 ℃ for 50 h. It was noted that the $\beta$--Nb SPPs were more
slowly oxidized than the zirconium matrix. The $\beta$--Nb SPPs of bcc structure were oxidized to form the mixed
structure of amorphous oxide and crystalline NbO$_{2}$ at the initial oxidation stage, and then the amorphous phase was changed to the
main structure at the middle oxidation stage, finally the niobium oxides were dissolved into the corrosion medium.
Key words:  Zr-2.5Nb alloys      heat treatment      β-Nb phase      crystal structure     
Received:  29 April 2011     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50871064 and 50971084), National High Technology Research and Development Program of China (No.2008AA031701),  Natural Science Foundation of Shanghai (No.09ZR1411700) and Shanghai Leading Academic Discipline Project (No.S30107)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00276     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/893

[1] Ells C E, Evans W. Can Min Metall Bull, 1981; 74: 105

[2] Yang W D. Reactor Materials Science. Beijing: Atomic Energy Press, 2006: 19

(杨文斗. 反应堆材料学. 北京: 原子能出版社, 2006: 19)

[3] Comstock R J, Schoenberger G, Sable G P. In: Bradley E R, Sabol G P, eds., Zirconium in the Nuclear Industry. Philadelphia: American Society for Testing and Materials, 1996: 710

[4] Ramasubramanian N, Balakrishnan P V. In: Garde A M, Bradley E R, eds., Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, Philadelphia: American Society for Testing and Materials, 1994: 378

[5] Anada H, Takeda K. In: Bradley E R, Sabol G P, eds., Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, Philadelphia: American Society for Testing and Materials, 1996: 35

[6] Perkins R A, Busch R A. In: Eucken C M, Garde A M, eds., Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132, Philadelphia: American Society for Testing and Materials, 1991: 595

[7] Shebaldov P V, Peregud M M, Nikulina A V, Bibilashvili Y K, Lositski A F, Kuz’menko N V, Belov V I, Novoselov A E. In: Sabol G P, Moan G D, eds., Zirconium in the Nuclear

Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken, PA: American Society for Testing and Materials, 2000: 545

[8] Kim H G, Jeong Y H, Kim T H. J Nucl Mater, 2004; 326: 125

[9] Jeong Y H, Lee K O, Kim H G. J Nucl Mater, 2002; 302: 9

[10] Koutsky J, Kocik J. Radiation Damage of Structural Materials. Amsterdam: Materials Science Monographys, 1994: 315

[11] Jeong Y H, Kim H G, Kim T H. J Nucl Mater, 2003; 317: 1

[12] Nikulina A V, Markelov V A, Peregud M M, Bibilashvili Y K, Kotrekhov V A, Lositsky A F, Kuzmenko N V, Shevnin Y P, Shamardin V K, Kobylyansky G P, Novoselov A E. In: Bradley E R, Sabol G P, eds., Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, Philadelphia: American Society for Testing and Materials, 1996: 785

[13] Kim H G, Choi B K, Park J Y, Cho H D, Jeong Y H. J Alloys Compd, 2009; 481: 867

[14] Liu W Q, Zhou B X, Li Q. Nucl Power Eng, 2002; 23: 69

(刘文庆, 周邦新, 李强. 核动力工程, 2002; 23: 69)

[15] Li Q. PhD Thesis, Shanghai University, 2008

(李强. 上海大学博士论文, 2008)

[16] Li Q, Liu W Q, Zhou B X. Rare Met Mater Eng, 2002; 31: 389

(李强, 刘文庆, 周邦新. 稀有金属材料与工程, 2002; 31: 389)
[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[4] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[5] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[6] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[7] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[8] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[9] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[10] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[11] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[12] WANG Wenquan, WANG Suyu, CHEN Fei, ZHANG Xinge, XU Yuxin. Microstructure and Mechanical Properties of TiN/Inconel 718 Composites Fabricated by Selective Laser Melting[J]. 金属学报, 2021, 57(8): 1017-1026.
[13] WANG Yue, WANG Jijie, ZHANG Hao, ZHAO Hongbo, NI Dingrui, XIAO Bolv, MA Zongyi. Effects of Heat Treatments on Microstructure and Mechanical Properties of AlSi10Mg Alloy Produced by Selective Laser Melting[J]. 金属学报, 2021, 57(5): 613-622.
[14] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[15] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
No Suggested Reading articles found!