Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 882-886    DOI: 10.3724/SP.J.1037.2011.00251
论文 Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF Zr(Fex, Cr1-x)2 ALLOYS IN 400℃ SUPERHEATED STEAM
CAO Xiaoxiao1), YAO Meiyi1),  PENG Jianchao2), ZHOU Bangxin1)
1) Institute of Materials, Shanghai University, Shanghai 200072
2) Laboratory for Microstructures, Shanghai University, Shanghai 200444
Cite this article: 

CAO Xiaoxiao YAO Meiyi PENG Jianchao ZHOU Bangxin. CORROSION BEHAVIOR OF Zr(Fex, Cr1-x)2 ALLOYS IN 400℃ SUPERHEATED STEAM. Acta Metall Sin, 2011, 47(7): 882-886.

Download:  PDF(1164KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  To study the corrosion behavior of second phase particles in zirconium alloys, Zr(Fex, Cr1-x)2 (x=1, 2/3, 1/3) metallic compounds which have the same composition as the second phase particles in Zr-4 alloy were prepared by vacuum non-consumable arc melting. XRD and energy filtered TEM were employed for analyzing the corrosion products, the element distribution and grain morphology after corrosion tests of Zr(Fex, Cr1-x)2 metallic compounds powder at 400 ℃ and 10.3 MPa superheated steam with different exposure times. The results show that Cr has a very strong effect on the corrosion resistance of Zr(Fex, Cr1-x)2 metallic compounds, increasing Cr content can improve the corrosion resistance. When Zr(Fex, Cr1-x)2 oxidation starts, zirconium oxide is formed while elements Fe and Cr are expelled from the zirconium oxide due to their low solid solubility in the oxide. α-Fe(Cr) and γ-Fe(Cr) are formed and then oxidized to the stable corrosion product (Fe, Cr)3O4. The different corrosion behaviors of metallic compounds will affect the microstructure evolution of zirconium oxide layer differently during the corrosion process, and hence affect the corrosion resistance of zirconium alloys.
Key words:  zirconium alloy      second phase particle      corrosion      energy filtered TEM     
Received:  20 April 2011     
ZTFLH: 

TG174

 
Fund: 

Supported by National Natural Science Foundation of China (No.50971084) and Shanghai Leading Academic Discipline Project (No.S30107)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00251     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/882

[1] Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H. At Energy Sci Technol, 2005; 39(suppl): 1

(赵文金, 周邦新, 苗志, 彭倩, 蒋有荣, 蒋宏曼, 庞华. 原子能科学技术, 2005; 39(增刊): 1)

[2] Zhou B X. J Met Heat Treat, 1997; 18(3): 8

(周邦新. 金属热处理学报, 1997; 18(3): 8)

[3] Zhou B X, Yang X L. Nucl Power Eng, 1997; 18: 511

(周邦新, 杨晓林. 核动力工程, 1997; 18: 511)

[4] Pˆecheur D, Lefebvre F, Motta A T, Lemaignan C, Wadier J F. J Nucl Mater, 1992; 189: 318

[5] Li C, Zhou B X, Miao Z. Corros Prot, 1996; 8: 242

(李 聪, 周邦新, 苗志. 腐蚀科学与防护, 1996; 8: 242)

[6] Pˆecheur D. J Nucl Mater, 2000; 278: 195

[7] Baek J H, Jeong Y H. J Nucl Mater, 2002; 304: 107

[8] Yang X L, Zhou B X, Jiang Y R, Li C. Nucl Power Eng, 1994; 15: 79

(杨晓林, 周邦新, 蒋有荣, 李聪. 核动力工程, 1994; 15: 79)

[9] Toffolon–Masclet C, Brachet J C, Jago G. J Nucl Mater, 2002; 305: 224

[10] Li Q, Zhou B X. Rare Met Mater Eng, 2000; 29: 283

(李 强, 周邦新. 稀有金属材料与工程, 2000; 29: 283)

[11] Engerton R F. Electron Energy Loss Spectroscopy. 2nd Ed., New York: Plenum Press, 1996: 323

[12] Zhou B X, Miao Z, Li C. Nucl Power Eng, 1997; 18: 53

(周邦新, 苗志, 李聪. 核动力工程, 1997; 18: 53)

[13] Zhou B X, Li Q, Yao M Y, Liu WQ, Chu Y L. Nucl Power Eng, 2005; 26: 364

(周邦新, 李强, 姚美意, 刘文庆, 褚于良. 核动力工程, 2005; 26: 364)

[14] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng, 2006; 35: 1009

(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料工程, 2006; 35: 1009)

[15] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kammenzind B, Limback M, eds., Zirconium in the Nuclear Industry: 15th Int Symp Zirconium in the Nuclear Industry, ASTM STP 1505, West Conshohochen: American Society for Testing and Materials, 2009: 360
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[3] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[4] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[5] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[6] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[7] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[8] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[9] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[10] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[11] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[12] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[13] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!