Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (8): 1032-1037    DOI: 10.3724/SP.J.1037.2011.00113
论文 Current Issue | Archive | Adv Search |
THE MICROSTRUTURE AND COMPRESSIVE PROPERTIES OF ARC–MELTED FeNb ALLOYS
LÜ Baochen, TAN Lin , XUE Weihua, SHI Haifang, REN Xin, LI Heliang
Materials Science & Engineering School, Liaoning Science Technology University, Fuxin 123000
Cite this article: 

Lü Baochen TAN Lin XUE Weihua SHI Haifang REN Xin LI Heliang. THE MICROSTRUTURE AND COMPRESSIVE PROPERTIES OF ARC–MELTED FeNb ALLOYS. Acta Metall Sin, 2011, 47(8): 1032-1037.

Download:  PDF(878KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructures and compressive properties of arc–melted Fe100−xNbx(x=6, 9,12, 15, 17) alloys, which are relevant to eutectic reaction (L → α–Fe+Fe2Nb), were investigated by SEM, XRD and test machine system 810 (TMS 810). The results showed that the microstructure of the ingot sample consisted of primary phase (α–Fe or Fe2Nb) and sub–micro–sized eutectics. Fe91Nb9 alloy had the best comprehensive properties with ultimate strength about 1.63 GPa, yield strength about 1.04 GPa and compressive strain ductility about 23%. For alloy Fe91Nb9, the substitution of Hf element for Nb element produced no observable effects on both the microstructure and the compressive mechanical properties; while the substitution of Y element for Fe element resulted in obvious change in the microstructure and dramatic deterioration in the mechanical properties.
Key words:  FeNb alloy      arc–melting      compessive properties      microstructure     
Received:  07 March 2011     
Fund: 

Supported by Science Foundation for Doctorae Research from Liaoning Science Technology Universuty (No.09416)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00113     OR     https://www.ams.org.cn/EN/Y2011/V47/I8/1032

[1] Ma E. Nature Mater, 2003; 2: 7

[2] He G, Echert J, L¨oser W, Schultz L. Nature Mater, 2003; 2: 33

[3] Das J, L¨oser W, K¨uhn U, Ecckert J, Roy S K, Schultz L. Appl Phys Lett, 2003; 82: 4690

[4] Coch C C. J Metastable Nanocryst Mater, 2003; 18: 9

[5] Das J, Tang M B, Kim K B, Theissman R, Baier F, Wang W H, Eckert J. Phys Rev Lett, 2005; 94: 205501

[6] Schroer J, Johnson W L. Phys Rev Lett, 2004; 93: 255506

[7] Kim K B, Das J, Xu W, Zhang Z F, Eckert J. Acta Mater, 2006; 54: 3701

[8] Hays C C, Kim C P, Johnson W L. Phys Rev Lett, 2000; 84: 2901

[9] Louzguine D V, Kato H, Louzguina L V, Inoue A. J Mater Res, 2004; 19: 3600

[10] Louzguine D V, Louzguina L V, Kato H, Inoue A. Acta Mater, 2005; 53: 2009

[11] Park JM, Sohn SW, Kim T E, KimK B, KimWT, Kim D H. Scr Mater, 2007; 57: 1153

[12] Das J, Kim K B, Baier F, L¨oser W, Eckert J. Appl Phys Lett, 2005; 87: 161907

[13] Park J M, Sohn SW, Kim D H, Kim K B, Kim W T, Eckert J. Appl Phys Lett, 2008; 92: 090910

[14] Louzguine DV, Kato H, Inoue A. J Alloys Compd, 2004; 384: L1

[15] Massalski T B. Binary Alloy Phase Diagrams. 2nd ed, Materials Park, ohio: ASM International, 1996: 1

[16] Miracle D B, Sanders W S, Senkov O N. Philos Mag, 2003; 83: 2409

[17] Louzguine D V, Louzguina L V, Kato H, Inoue A. Acta Mater, 2005; 53: 2009

[18] Inoue A, Zhang T, Masumoto T. J Non–Cryst Solids, 1993; 156–158: 473

[19] Boettinger W J. In: Kear B H, Giessen B C, Cohn M eds., Rapidly Solidified Amorphous, Crystalline Alloys. Dordrecht: Elsevier Science Publishing, 1982: 15

[20] Miedema A R, de Boer F R, de Chatel P F. J Phys, 1973; 3F: 1558

[21] Takeuchi A, Inoue A. Mater Trans, 2001; 42: 1435

[22] Shindo T, Waseda Y, Inoue A. Mater Trans, 2002; 43: 2502

[23] Chen H S. Acta Metall, 1976; 24: 153

[24] Johnson W L. MRS Bull, 1999; 24: 42

[25] Park E S, Kim D H. Acta Mater, 2006; 54: 2597

[26] Zhao Y Y, Ma E, Xu J. Scr Mater, 2008; 58: 496

[27] Sikka V K. Mater Sci Eng, 1992; A153: 714

[28] Lee J H, Choe B H, Kim H M. Mater Sci Eng, 1992; A152: 253

[29] Hong S C, Lee K S. Mater Sci Eng, 2002; A323: 148

[30] Ma M T, Wu Y R. Dual Phase Steel—Physics & Mechanical Metallurgy. Beijing: Metallurgical Industry Press, 1988: 156

(马鸣图, 吴玉榕. 双相钢-物理和力学冶金. 北京: 冶金工业出版社, 1988: 156)

[31] Fu S Y, Zhou B L. Acta Metall Sin, 1992; 28B: 514

(傅绍云, 周本濂. 金属学报, 1992; 28B: 514)

[32] Xu H W, Yang W Y, Sun Z Q. Acta Metall Sin, 2006; 42: 1101

(徐海卫, 杨王玥,孙祖庆. 金属学报, 2004; 42: 1101)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!