|
|
THE MICROSTRUTURE AND COMPRESSIVE PROPERTIES OF ARC–MELTED FeNb ALLOYS |
LÜ Baochen, TAN Lin , XUE Weihua, SHI Haifang, REN Xin, LI Heliang |
Materials Science & Engineering School, Liaoning Science Technology University, Fuxin 123000 |
|
Cite this article:
Lü Baochen TAN Lin XUE Weihua SHI Haifang REN Xin LI Heliang. THE MICROSTRUTURE AND COMPRESSIVE PROPERTIES OF ARC–MELTED FeNb ALLOYS. Acta Metall Sin, 2011, 47(8): 1032-1037.
|
Abstract The microstructures and compressive properties of arc–melted Fe100−xNbx(x=6, 9,12, 15, 17) alloys, which are relevant to eutectic reaction (L → α–Fe+Fe2Nb), were investigated by SEM, XRD and test machine system 810 (TMS 810). The results showed that the microstructure of the ingot sample consisted of primary phase (α–Fe or Fe2Nb) and sub–micro–sized eutectics. Fe91Nb9 alloy had the best comprehensive properties with ultimate strength about 1.63 GPa, yield strength about 1.04 GPa and compressive strain ductility about 23%. For alloy Fe91Nb9, the substitution of Hf element for Nb element produced no observable effects on both the microstructure and the compressive mechanical properties; while the substitution of Y element for Fe element resulted in obvious change in the microstructure and dramatic deterioration in the mechanical properties.
|
Received: 07 March 2011
|
Fund: Supported by Science Foundation for Doctorae Research from Liaoning Science Technology Universuty (No.09416) |
[1] Ma E. Nature Mater, 2003; 2: 7[2] He G, Echert J, L¨oser W, Schultz L. Nature Mater, 2003; 2: 33[3] Das J, L¨oser W, K¨uhn U, Ecckert J, Roy S K, Schultz L. Appl Phys Lett, 2003; 82: 4690[4] Coch C C. J Metastable Nanocryst Mater, 2003; 18: 9[5] Das J, Tang M B, Kim K B, Theissman R, Baier F, Wang W H, Eckert J. Phys Rev Lett, 2005; 94: 205501[6] Schroer J, Johnson W L. Phys Rev Lett, 2004; 93: 255506[7] Kim K B, Das J, Xu W, Zhang Z F, Eckert J. Acta Mater, 2006; 54: 3701[8] Hays C C, Kim C P, Johnson W L. Phys Rev Lett, 2000; 84: 2901[9] Louzguine D V, Kato H, Louzguina L V, Inoue A. J Mater Res, 2004; 19: 3600[10] Louzguine D V, Louzguina L V, Kato H, Inoue A. Acta Mater, 2005; 53: 2009[11] Park JM, Sohn SW, Kim T E, KimK B, KimWT, Kim D H. Scr Mater, 2007; 57: 1153[12] Das J, Kim K B, Baier F, L¨oser W, Eckert J. Appl Phys Lett, 2005; 87: 161907[13] Park J M, Sohn SW, Kim D H, Kim K B, Kim W T, Eckert J. Appl Phys Lett, 2008; 92: 090910[14] Louzguine DV, Kato H, Inoue A. J Alloys Compd, 2004; 384: L1[15] Massalski T B. Binary Alloy Phase Diagrams. 2nd ed, Materials Park, ohio: ASM International, 1996: 1[16] Miracle D B, Sanders W S, Senkov O N. Philos Mag, 2003; 83: 2409[17] Louzguine D V, Louzguina L V, Kato H, Inoue A. Acta Mater, 2005; 53: 2009[18] Inoue A, Zhang T, Masumoto T. J Non–Cryst Solids, 1993; 156–158: 473[19] Boettinger W J. In: Kear B H, Giessen B C, Cohn M eds., Rapidly Solidified Amorphous, Crystalline Alloys. Dordrecht: Elsevier Science Publishing, 1982: 15[20] Miedema A R, de Boer F R, de Chatel P F. J Phys, 1973; 3F: 1558[21] Takeuchi A, Inoue A. Mater Trans, 2001; 42: 1435[22] Shindo T, Waseda Y, Inoue A. Mater Trans, 2002; 43: 2502[23] Chen H S. Acta Metall, 1976; 24: 153[24] Johnson W L. MRS Bull, 1999; 24: 42[25] Park E S, Kim D H. Acta Mater, 2006; 54: 2597[26] Zhao Y Y, Ma E, Xu J. Scr Mater, 2008; 58: 496[27] Sikka V K. Mater Sci Eng, 1992; A153: 714[28] Lee J H, Choe B H, Kim H M. Mater Sci Eng, 1992; A152: 253[29] Hong S C, Lee K S. Mater Sci Eng, 2002; A323: 148[30] Ma M T, Wu Y R. Dual Phase Steel—Physics & Mechanical Metallurgy. Beijing: Metallurgical Industry Press, 1988: 156(马鸣图, 吴玉榕. 双相钢-物理和力学冶金. 北京: 冶金工业出版社, 1988: 156)[31] Fu S Y, Zhou B L. Acta Metall Sin, 1992; 28B: 514(傅绍云, 周本濂. 金属学报, 1992; 28B: 514)[32] Xu H W, Yang W Y, Sun Z Q. Acta Metall Sin, 2006; 42: 1101(徐海卫, 杨王玥,孙祖庆. 金属学报, 2004; 42: 1101) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|