Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (8): 1086-1093    DOI: 10.3724/SP.J.1037.2010.00641
论文 Current Issue | Archive | Adv Search |
LASER IN SITU SYNTHESIZED TiN/Ti3Al COMPOSITE COATINGS
ZHANG Xiaowei, LIU Hongxi, JIANG Yehua, WANG Chuanqi
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
Cite this article: 

ZHANG Xiaowei LIU Hongxi JIANG Yehua WANG Chuanqi. LASER IN SITU SYNTHESIZED TiN/Ti3Al COMPOSITE COATINGS. Acta Metall Sin, 2011, 47(8): 1086-1093.

Download:  PDF(1137KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Utilizing the high–temperature chemical reaction between Ti and AlN, TiN reinforced Ti3Al composite coating was in situ synthesized on TC4 alloy substrate by laser cladding technique. The phase constitution and microstructure of treated samples were examined by XRD and SEM. The results reveal that the coating is mainly composed of TiN and Ti3Al phase. When the molar ratio between Ti and AlN is 4∶2, the content of TiN reduces as the laser power density increases; whereas when the molar ratio between Ti and AlN is 4∶1, the content of TiN increases with increasing the laser power density. SEM observation shows that the morphology of TiN changes gradually from bar–shaped to granular with the increase of laser power density. When the molar ratio between Ti and AlN is 4∶1 and the laser power density is 15.28 kW·s·cm−2, the macro-morphology of surface coating is better, no pores and cracks appear. The average microhardness of laser cladding coating is 3.4 times larger than that of TC4 alloy substrate.
Key words:  laser cladding      TiN/Ti3Al composite coating      microstructure      in situ synthesis     
Received:  01 December 2010     
ZTFLH: 

TG146. 2+3

 
Fund: 

Supported by National Natural Science Foundation of China(No.51165015)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00641     OR     https://www.ams.org.cn/EN/Y2011/V47/I8/1086

[1] Astar E, Kayali E S, Cimenoglu H. Surf Coat Technol, 2008; 202: 4583

[2] Gurrappa I, Gogia A K. Surf Coat Technol, 2001; 139: 216

[3] Liu X B, Shi S H, Guo J, Fu G Y, Wang M D. Appl Surf Sci, 2009; 255: 5662

[4] Ceschini L, Lanzoni E, Martini C, Prandstraller D, Sambogna G. Wear, 2008; 264: 86

[5] Leng C Y, Zhou R, Zhang X, Lu D H, Liu H X. Acta Metall Sin, 2009; 45: 764

(冷崇燕, 周荣, 张旭, 卢德宏, 刘洪喜. 金属学报,2009; 45: 764)

[6] Guo B G, Zhou J S, Zhang S T, Zhou H D, Pu Y P, Chen J M. Mater Sci Eng, 2008; A480: 404

[7] Zhang Y Z, Jin J T, Huang C, Shi L K. Rare Met Mater Eng, 2010; 39: 1403

(张永忠, 金具涛, 黄灿, 石力开. 稀有金属材料与工程,2010; 39: 1403)

[8] Liu H X, Jiang Y H, Zhou R, Zhou R F, Jin Q L, Tang B Y. Acta Metall Sin, 2008; 44: 325

(刘洪喜, 蒋业华, 周 荣, 周荣锋, 金青林, 汤宝寅. 金属学报, 2008; 44: 325)

[9] Suresha S J, Bhide R, Jayaram V, Biswas S K. Mater Sci Eng, 2006; A429: 252

[10] Bhaduri D, Chattopadhyay A K. Surf Coat Technol, 2010; 205: 658

[11] Xia F F, Liu C, Wang F, Wu M H, Wang J D, Fu H L, Wang J X. J Alloys Compd, 2010; 490: 431

[12] Zeng X B, Peng P. Acta Metall Sin, 2009; 45: 1049

(曾宪波, 彭平. 金属学报, 2009; 45: 1049)

[13] Shiue R K, Wu S K, Chen Y T. Intermetallics, 2010; 18: 107

[14] Paransky Y, Berner A, Gotman I. Mater Lett, 1999; 40: 180

[15] Wang Y X, Chen X. Appl Surf Sci, 1999; 148: 235

[16] Kun J, Ma X G, Liu X F. J Alloys Compd, 2009; 488: 84

[17] Coelho J P, Abreu M A, Pires M C. Opt Laser Eng, 2000; 34: 385

[18] Li L J, Mazumder J. Appl Laser, 1986; 7: 1

(李力钧, Mazumder J. 应用激光, 1986; 7: 1)

[19] Zhang F, Yan P X, Chen J T, Miao B B, Li G B, Wang J. J Syn Cryst, 2007; 36: 3

(张飞, 闫鹏勋, 陈江涛, 苗彬彬, 李冠斌, 王君. 人工晶体学报, 2007; 36: 3)

[20] Zuo Y S, Chen W Z, Liang W. Modern Analysis Methods of Materials. Beijing: Press of Beijing University of Technology, 2006: 107, 111

(左演声, 陈文哲, 梁伟. 材料现代分析方法. 北京: 北京工业大学出版社, 2006: 107, 111)

[21] Li G F, Wang S H, Shi Z L. Nonferrous Met, 2008; 60: 53

(李国芳, 王顺花, 石宗利. 有色金属, 2008; 60: 53)

[22] Lv W J, Zhang X N, Zhang D, Wu R J, Bian Y J, Fang P W. Acta Metall Sin, 2000; 36: 105

(吕维杰, 张小农, 张 荻, 吴人杰, 卞玉君, 方平伟. 金属学报,2000; 36: 105)

[23] Yin S, Miu S X, Liao X W, Lai H Y, Wang R. J Univ Sci Technol Beijing, 1993; 15: 99

(殷声, 缪曙霞, 廖湘巍, 赖和怡, 王润. 北京科技大学学报,1993; 15: 99)

[24] Dai Y N. Binary Alloy Phase Diagrams. Beijing: Science Press, 2009: 1

(戴永年. 二元合金相图集. 北京: 科学出版社, 2009: 1)

[25] Gao J, Li C R, Wang N, Du Z M. J Univ Sci Technol Beijing, 2000; 15: 420

[26] Zhou G D, Duan L Y. The Basis of Structural Chemistry, 3rd Ed. Beijing: Peking University Press, 2002: 178

(周公度, 段连运. 结构化学基础. 第三版, 北京: 北京大学出版社, 2002: 178)

[27] Ye D L, Hu J H. Thermodynamic Data Sheet of Practical Inorganic, 2nd Ed. Beijing: Metallurgical Industry Press, 2002: 79, 1055

(叶大伦, 胡建华. 实用无机物热力学数据手册. 第二版, 北京: 冶金工业出版社, 2002: 79, 1055)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!