Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (1): 88-94    DOI: 10.3724/SP.J.1037.2010.00434
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Nb-16Si-22Ti--2Hf--2Cr--2Al INGOT PREPARED BY VACUUM INDUCTION MELTING
JIA Lina, GAO Ming, GE Jingru, ZHENG Lijing, SHA Jiangbo, ZHANG Hu
School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191
Cite this article: 

JIA Lina GAO Ming GE Jingru ZHENG Lijing SHA Jiangbo ZHANG Hu. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Nb-16Si-22Ti--2Hf--2Cr--2Al INGOT PREPARED BY VACUUM INDUCTION MELTING. Acta Metall Sin, 2011, 47(1): 88-94.

Download:  PDF(1464KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The melt with a nominal composition of Nb-16Si-22Ti-2Hf-2Cr-2Al was poured in a ceramic shell mould with a temperature gradient of about 4℃/mm, and the ingot with the dimension of 60 mm×170 mm was obtained. The relationship between the microstructure and mechanical properties was measured, and the effects of the silicide on fracture toughness at ambient temperature and compression strength at high temperature were analyzed. It is revealed that the microstructure of the alloy consists of Nb solid solution and silicides, and the cooling rate can obviously change primary phase and constituent phases. The volume fraction of Nb3Si formed at rapid cooling rate is significantly increased, and Nb5Si3 phase is formed with decreasing in cooling rate, whereas the volume fraction of the eutectic colonies and NbSS dendrites increase evidently, especially the second dendrite arm. Fine and uniform eutectic colonies are contributed to the ambient tensile strength, while the coarse primary Nb3Si decreases the tensile strength but improves the compression strength of the alloy. When the microstructure is mainly composed of fine (NbSS+Nb5Si3) eutectic colonies, the tensile strength and elongation of the alloy reach 449 MPa and 0.3%, respectively. When lath-like Nb3Si phase has 80 $\mu$m in width and 50% in volume fraction as well as its long axis is parallel to compression direction, the compression strength of the alloy at 1250℃ is about 650 MPa.
Key words:  Nb-Si base alloy      vacuum induction melting      microstructure      tensile strength      high temperature compression strength     
Received:  31 August 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00434     OR     https://www.ams.org.cn/EN/Y2011/V47/I1/88

[1] Bewlay B P, Jackson M R, Lipsitt H A. Metall Mater Trans, 1996; 27A: 3802

[2] Guan P, Guo X P, Ding X, Zhang J, Gao L M. Acta Metall Sin, 2004; 17: 450

[3] Bewlay B P, Jackson M R, Subramanian P R. JOM, 1999; 51: 32

[4] Yao C F, Guo X P, Guo H S, Li Y K. J Mater Eng, 2007; 1: 165

(姚成方, 郭喜平, 郭海生, 李永凯. 材料工程, 2007; 1: 165)

[5] Yang L L, Huang Y, Li X J, Zheng L J, Zhang H. Spec Cast Nonferrous Alloys, 2009; 26: 500

(杨莉莉, 黄 燕, 李小溅, 郑立静, 张虎. 特种铸造及有色合金, 2009; 26: 500)

[6] Jia L N, Li X J, Sha J B, Zhang H. Rare Met Mater Eng, 2010; 39: 1476

(贾丽娜, 李小溅, 沙江波, 张虎. 稀有金属材料与工程, 2010; 39: 1476)

[7] Yu J L, Zhang K F. Scr Mater, 2008; 59: 714

[8] Yu J L, Zhang K F, Wang G F. Intermetallics, 2008; 16: 1167

[9] Xu H B, Gao M, Gong L J, Tang X X, Zhang H. Chin Pat,200810101791.1, 2008

(徐惠彬, 高明, 龚路杰, 唐晓霞, 张虎. 中国专利, 200810101791.1, 2008)

[10] Sekido N, Yoshisato K, Seiji M, Wei F G, Mishima Y. J Alloys Compd, 2006; 425: 223

[11] Ashby M F, Blunt F J, Bannister M. Acta Metall, 1989; 37: 1847

[12] Subramanian PR, MendirattaMG, DimidukDM, Stucke M A. Mater Sci Eng, 1997; A239: 8

[13] He Y D, Qu X H, Huang B Y. Chin J Rare Met, 2003; 27: 305

(何玉定, 曲选辉, 黄伯云. 稀有金属, 2003; 27: 305)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!