Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (1): 95-101    DOI: 10.3724/SP.J.1037.2010.00398
论文 Current Issue | Archive | Adv Search |
INFLUENCES OF PREPARATION PARAMETERS ON MORPHOLOGY AND PHOTOLUMINESCENCE PROPERTY OF BaZrO3:Ce NANO-POWDERS
LI Yuling1), MA Weimin1), WEN Lei2),  WEN Qiang1),  YUAN Xiaoyu3)
1) Liaoning Province Key Laboratory for Rare-Earth Chemistry and Applying, College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142
2) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3) College of Mechanical Engineering, Shenyang University, Shenyang 110044
Cite this article: 

LI Yuling MA Weimin WEN Lei WEN Qiang YUAN Xiaoyu. INFLUENCES OF PREPARATION PARAMETERS ON MORPHOLOGY AND PHOTOLUMINESCENCE PROPERTY OF BaZrO3:Ce NANO-POWDERS. Acta Metall Sin, 2011, 47(1): 95-101.

Download:  PDF(1280KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  BaZrO3:Ce nano-materials were synthesized by coprecipitation reaction under different conditions. XRD, SEM and TG-DTA were applied to analyze the changes of phase and characteristic of the powders during calcing process. The luminescence spectra of samples were analyzed by the fluorescence photometer. It is shown that BaZrO3:Ce nano-materials calcined at 1000℃ for 3 h has the best luminescence property, especially the samples doped 0.7%Ce3+ (molar fraction) is optimal, and its excited spectrum is at 247 nm and emitted spectrum is from 475 nm to 505 nm. The best liquid conditions are that the initial concentration of mother liquor is 0.04 mol/L, containing 2%-3% (mass fraction) of DBS, the titration rate is 2 mL/min and the temperature is 0℃. The as-prepared powders are of well dispersed property and small average size of 20 nm.
Key words:  BaZrO3∶Ce nano-powder      complex precipitation agent      crystallization      photoluminescence spectrum      powder morphology     
Received:  06 August 2010     
Fund: 

Supported by Key Laboratory Project from Office of Education of Liaoning Province (No.20008S181),  Science & Technology Program of Liaoning Province (No.2008224001) and Science & Technology Program of Shenyang (No.1081236-1-00)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00398     OR     https://www.ams.org.cn/EN/Y2011/V47/I1/95

[1] Nikl M, Mares J A, Solovieva N, Li H L, Liu X J, Huang L P, Fontana I, Fasoli M, Vedda A, Ambrosio C D. J Appl Phy, 2007; 101: 33515

[2] Serivalsatit K, Kokuoz B, Yazgan–Kokuoz B, Kennedy M, Ballato J. J Am Ceram Soc, 2010; 93: 1320

[3] Ramirez M O,Wisdom J, Li H F, Aung Y L, Stitt J, Messing G L, Dierolf V, Liu Z W, Ikesue A, Byer R L, Gopalan V. Optics Express, 2008; 16: 5965

[4] Hell E, Knupfer W, Mattern D. Nucl Instrum Methods Phys Res, 2000; 454A: 40

[5] Duclos S J, Greskovich C D, Lyons R J, Vartuli J S, Hoffman D M, Riedner R J, Lynch M J. Nucl Instrum Methodes Phys Res, 2003; 505A: 68

[6] Hong G Y, Jeon B S, Yoo Y K, Yoo J S. J Electrochem Soc, 2001; 148(11): 161

[7] Yoo J S, Lee J D. J Appl Phys, 1997; 81: 2810

[8] Schaik W V, Blasse G. Chem Mater, 1992; 4: 410

[9] Mishra K C, Berkowitz J K, Johnson K H, Schmidt P C. Phys Rev, 1992; 45B: 10902

[10] Ji Y M, Jiang D Y, Qin L S, Chen J J, Feng T, Liao Y K, Xu Y P, Shi J L. J Cryst Growth, 2005; 280: 93

[11] Villanueva–Iba˜nez M, Le Luyer C, Parola S, Dujardin C, Mugnier J. Opt Mater, 2005; 27: 1541

[12] Ji Y M, Jiang D Y, Wu Z H, Feng T, Shi J L. Mater Res Bull, 2005; 40: 1521

[13] R´etot H, Bessi`ere A, Kahn–Harari A, Viana B. Opt Mater, 2008; 30: 1109

[14] Dole S L, Venkataramani S. US Pat 5124072, 1992

[15] Kintaka Y J, Kuretake S, Tanaka N, Kageyama K, Takagi H. J Am Ceram Soc, 2010; 93: 1114

[16] Moon C, Nishi M, Miura K, Hirao K. J Lumin, 2009; 129: 817

[17] Liu X H, Wang X D. Opt Mater, 2007; 30: 626

[18] Haberko K, Ciesla A, Pron A. Ceramurgia Int, 1975; 1(3): 111

[19] Zhang J C, Wen Z Y, Huang S H, Wu J G, Han J D. Ceram Int, 2008; 34: 1273

[20] Pan J H, Zhang X W, Du A J H, Sun D D, Leckie J O. J Am Chem Soc, 2008; 130: 11256
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[6] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[7] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[8] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[9] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[10] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[11] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[12] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[13] JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. 金属学报, 2021, 57(6): 703-716.
[14] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[15] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
No Suggested Reading articles found!