Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (1): 102-108    DOI: 10.3724/SP.J.1037.2010.00315
论文 Current Issue | Archive | Adv Search |
GROWTH BEHAVIOR OF FATIGUE CRACK IN SPRAY-FORMED SiCp/Al-7Si COMPOSITE
LI Wei, CHEN Zhenhua, CHEN Ding, TENG Jie
College of Materials Science and Engineering, Hunan University, Changsha 410082
Cite this article: 

LI Wei CHEN Zhenhua CHEN Ding TENG Jie. GROWTH BEHAVIOR OF FATIGUE CRACK IN SPRAY-FORMED SiCp/Al-7Si COMPOSITE. Acta Metall Sin, 2011, 47(1): 102-108.

Download:  PDF(1406KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In order to investigate the fatigue crack growth behaviors of SiCp/Al-7Si composite and the unreinforced alloy prepared by spray deposition, compact tension (CT) specimens were prepared and tension-tension fatigue tests were carried out under constant-amplitude load and load shedding technique (ΔK-decreasing) control to obtain the fatigue threshold. The experimental data demonstrate that the addition of SiC particles results in superior fatigue crack propagation properties for a given ΔK, i.e. lower crack growth rate and higher intrinsic threshold stress intensity factor. The SiC particles play a significant role in dictating the rate of fatigue crack growth. OM and SEM observations show that crack deflections around SiC particles and particle cracking are the principle mechanisms of interaction between SiC particles and crack tip. Moreover, detailed quantitative analysis indicates that the extent of particle cracking induces a high level of fatigue crack closure, which effectively reduces the driving force of crack growth and so slows down fatigue crack growth. However, when the closure-corrected effective stress intensity factor range (ΔKeff) acts as the crack driving force, the composite shows a higher crack growth behavior than the unreinforced alloy.
Key words:  Al-Si alloy      SiC particle      composite      spray deposition      fatigue crack growth      crack closure     
Received:  30 June 2010     
ZTFLH: 

TG111

 
Fund: 

Supported by National Natural Science Foundation of China (No.50875225) and International Cooperation of Hunan province in China (No.2007WK2005)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00315     OR     https://www.ams.org.cn/EN/Y2011/V47/I1/102

[1] Lim D W, Kim T H, Choi J H, Kweon J H, Park H S. Comp Struct, 2008; 86: 101

[2] Yamabe J, Takaqi M, Matsui T, Kimura T, Sasaki M. JSAE Rev, 2002; 23: 105

[3] Mayer H, Papakyriacou M, Zettl B, Stanzl–tschegg S E. Int J Fatigue, 2003; 25: 245

[4] Li Z, Samuel A, Samuel F H, Ravidrang C, Doty H W, Valiterra S. Mater Sci Eng, 2004; A367: 96

[5] Chen Z H, Teng J, Chen G, Fu D F, Yan H G. Wear, 2007; 262: 362

[6] Molina J M, Prieto R, Narciso J, Louis E. Scr Mater, 2009; 60: 582

[7] Bereta L A, Ferrarini C F, BottaF W J F, Kiminami C S, Bolfarini C. J Alloys Compd, 2007; 434–435: 371

[8] Tjong S C, Wang G D. Mater Sci Eng, 2004; A386: 48

[9] Hua W J, Wang Z R, Zhang J R. Acta Metall Sin, 1996; 32: 254

(华文君, 王执锐, 张继荣. 金属学报, 1996; 32: 254)

[10] Milan M T, Bowen P. ASM Int, 2004; 13: 612

[11] Suginura Y, Suresh S. Metall Trans, 1992; 23A: 2231

[12] Mason J J, Ritchie R O. Mater Sci Eng, 1997; A231: 170

[13] Zhou L H, Fan J Z, Zuo Y, Zhang Q, Wei S H. Chin J Nonferrous Met, 2009; 19: 1795

(邹利华, 樊建中, 左涛, 张淇, 魏少华. 中国有色金属学报, 2009; 19: 1795)

[14] Liu, Shang J K. Acta Mater, 1996; 44: 79–91

[15] Chen Z Z, He P, Chen L Q. J Mater Sci Technol, 2007; 23: 213

[16] Kaynak C, Boylu SMater Des, 2006; 27: 776

[17] Sutherland T J, Hoffman P B, Gibeling J C. Metall Mater Trans, 1994; 25A: 2453

[18] Liu G, Zhu D, Shang J K. Metall Mater Trans, 1995; 26A: 159

[19] Llorca Y, Embury J D. Acta Metall Mater, 1991; 39: 1781

[20] Hunt W H, Brochenbrough J R, Magnusen P E. Scr Metall, 1991; 25: 15

[21] McMeeking R M, Evans A G. J Am Ceram Soc, 1982; 65: 242
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[6] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[7] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[8] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[9] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[10] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[11] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[12] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[13] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[14] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[15] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
No Suggested Reading articles found!