|
|
Formation and Evolution Mechanism of Voids in M50 Bearing Steel During Thermal Deformation |
HOU Zhiyuan1,2,3, LIU Weifeng1,3, XU Bin1,3( ), SUN Mingyue1,3( ), SHI Jing2, REN Shaofei1,3 |
1 CAS Key Laboratory of Nuclear Materials and Safety, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, Ocean University of China, Qingdao 266003, China 3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
HOU Zhiyuan, LIU Weifeng, XU Bin, SUN Mingyue, SHI Jing, REN Shaofei. Formation and Evolution Mechanism of Voids in M50 Bearing Steel During Thermal Deformation. Acta Metall Sin, 2024, 60(1): 57-68.
|
Abstract M50 bearing steel is widely used in the manufacture of aeroengine spindle bearings. The voids generated by the thermal processing of bearing steel can easily initiate fatigue cracks and lead to fatigue failure of the bearings. Thus, it is essential to understand the steel production conditions, void distribution in the steel, and effect of the subsequent treatment on the healing process of voids to improve the thermal processing and mechanical properties of the steel. In this work, the thermal deformation of the M50 bearing steel was conducted using a thermal simulation machine. The effects of the strain rate (0.001-1 s-1), deformation temperature (1000-1150oC) and strain (10%-50%) on the formation of voids and void healing during the subsequent thermal treatment were systematically studied using OM, SEM, EBSD, and in situ scanning methods. The results show that the formation of voids between the carbide and matrix is attributed to the different hardness values between the matrix and primary M2C and MC carbides. In addition, the carbide fractures can promote the formation of internal voids. The quantitative analysis of the voids indicated that most voids are generated under the following conditions: a high strain rate of 1 s-1, low deformation temperature of 1000oC, and medium deformation of 30%. Applying a heat treatment after deformation can significantly promote the void healing process, and the Cr element is enriched in the healing zone due to its rapid diffusion in γ-Fe.
|
Received: 12 May 2022
|
|
Fund: National Key Research and Development Program of China(2018YFA0702900);National Natural Science Foundation of China(51774265);National Natural Science Foundation of China(51701225);National Natural Science Foundation of China(52173305);National Science and Technology Major Project of China(2019ZX06004010);Strategic Priority Research Program of the Chinese Academy of Sciences(XDC04000000);Lingchuang Research Project of China National Nuclear Corporation, and Youth Innovation Promotion Association, Chinese Academy of Sciences |
Corresponding Authors:
XU Bin, professor, Tel: (024)83970108, E-mail: bxu@imr.ac.cn; SUN Mingyue, professor, Tel: (024)83970108, E-mail: mysun@imr.ac.cn
|
1 |
Maugis P, Gouné M. Kinetics of vanadium carbonitride precipitation in steel: A computer model [J]. Acta Mater., 2005, 53: 3359
doi: 10.1016/j.actamat.2005.03.036
|
2 |
Garg A, McNelley T R, Perry J L. Analysis of microporosity associated with insoluble carbides in VIM-VAR AISI M-50 steel [J]. Metallography, 1987, 20: 89
doi: 10.1016/0026-0800(87)90067-X
|
3 |
Tomita Y. Effect of decreased hot-rolling reduction treatment on fracture toughness of low-alloy structural steels [J]. Metall. Trans., 1990, 21A: 2555
|
4 |
Biswas D K, Venkatraman M, Narendranath C S, et al. Influence of sulfide inclusion on ductility and fracture behavior of resulfurized HY-80 steel [J]. Metall. Trans., 1992, 23A: 1479
|
5 |
Roberts W, Lehtinen B, Easterling K E. An in situ SEM study of void development around inclusions in steel during plastic deformation [J]. Acta Metall., 1976, 24: 745
doi: 10.1016/0001-6160(76)90109-7
|
6 |
Hwang Y M, Chen D C. Analysis of the deformation mechanism of void generation and development around inclusions inside the sheet during sheet rolling processes [J]. Proc. Inst. Mech. Eng., 2003, 217B: 1373
|
7 |
Thomson R D, Hancock J W. Ductile failure by void nucleation, growth and coalescence [J]. Int. J. Fract., 1984, 26: 99
doi: 10.1007/BF01157547
|
8 |
Pietrzyk M, Kawalla R, Pircher H. Simulation of the behaviour of voids in steel plates during hot rolling [J]. Steel Res., 1995, 66: 526
doi: 10.1002/srin.1995.66.issue-12
|
9 |
Ervasti E, Ståhlberg U. Void initiation close to a macro-inclusion during single pass reductions in the hot rolling of steel slabs: A numerical study [J]. J. Mater. Process. Technol., 2005, 170: 142
doi: 10.1016/j.jmatprotec.2005.04.117
|
10 |
Yu H L, Liu X H, Bi H Y, et al. Deformation behavior of inclusions in stainless steel strips during multi-pass cold rolling [J]. J. Mater. Process. Technol., 2009, 209: 455
doi: 10.1016/j.jmatprotec.2008.02.016
|
11 |
Cheng R, Zhang J M, Wang B. Formation mechanism of voids around hard inclusion during hot rolling processes [J]. High Temp. Mater. Processes, 2018, 37: 717
doi: 10.1515/htmp-2017-0051
|
12 |
Cheng R, Zhang J M, Wang B. Deformation behavior of MnO13%-Al2O318%-SiO269% inclusion in different steels during hot rolling processes [J]. Metall. Res. Technol., 2017, 114: 608
doi: 10.1051/metal/2017058
|
13 |
Klevebring B I, Bogren E, Mahrs R. Determination of the critical inclusion size with respect to void formation during hot working [J]. Metall. Trans., 1975, 6A: 319
|
14 |
Harik V M, Cairncross R A. Evolution of interfacial voids around a cylindrical inclusion [J]. J. Appl. Mech., 1999, 66: 310
doi: 10.1115/1.2791050
|
15 |
Luo C H. Evolution of voids close to an inclusion in hot deformation of metals [J]. Comput. Mater. Sci., 2001, 21: 360
doi: 10.1016/S0927-0256(01)00149-5
|
16 |
Harik V M, Cairncross R A. Formation of interfacial voids in composites with a weakly bonded viscoplastic matrix [J]. Mech. Mater., 2000, 32: 807
doi: 10.1016/S0167-6636(00)00048-X
|
17 |
Dunne F P E, Katramados I. Micro-mechanical modelling of strain induced porosity under generally compressive stress states [J]. Int. J. Plast., 1998, 14: 577
doi: 10.1016/S0749-6419(99)80001-1
|
18 |
Wang A, Thomson P F, Hodgson P D. A study of pore closure and welding in hot rolling process [J]. J. Mater. Process. Technol., 1996, 60: 95
doi: 10.1016/0924-0136(96)02313-8
|
19 |
Zhou X Y, Shao Z T, Pruncu C I, et al. A study on central crack formation in cross wedge rolling [J]. J. Mater. Process. Technol., 2020, 279: 116549
doi: 10.1016/j.jmatprotec.2019.116549
|
20 |
Wang Y, Yu F, Cao W Q, et al. Effects of thermal deformation on refinement and uniformity of carbide in high temperature bearing steel [J]. Hot Work. Technol., 2015, 44(13): 35
|
|
王 燕, 俞 峰, 曹文全 等. 热变形对高温轴承钢中碳化物的均质化与细质化影响规律研究 [J]. 热加工工艺, 2015, 44(13): 35
|
21 |
Bombač D, Terčelj M, Kugler G, et al. Amelioration of surface cracking during hot rolling of AISI D2 tool steel [J]. Mater. Sci. Technol., 2018, 34: 1723
doi: 10.1080/02670836.2018.1475862
|
22 |
Wang F, Qian D S, Hua L, et al. Voids healing and carbide refinement of cold rolled M50 bearing steel by electropulsing treatment [J]. Sci. Rep., 2019, 9: 11315
doi: 10.1038/s41598-019-47919-6
pmid: 31383934
|
23 |
Du N Y, Liu H H, Cao Y F, et al. Formation mechanism of MC and M2C primary carbides in as-cast M50 bearing steel [J]. Mater. Charact., 2021, 174: 111011
doi: 10.1016/j.matchar.2021.111011
|
24 |
Liu W F, Guo Y F, Cao Y F, et al. Transformation behavior of primary MC and M2C carbides in Cr4Mo4V steel [J]. J. Alloys Compd., 2021, 889: 161755
doi: 10.1016/j.jallcom.2021.161755
|
25 |
Chen L, Song B, Chen T M, et al. Control countermeasures of center porosity and shrinkage in 45 steel continuous casting bloom [J]. Iron Steel, 2018, 53(8): 49
|
|
陈 亮, 宋 波, 陈天明 等. 45钢连铸大方坯中心疏松与缩孔控制 [J]. 钢铁, 2018, 53(8): 49
|
26 |
Stefanescu D M. Computer simulation of shrinkage related defects in metal castings—A review [J]. Int. J. Cast Met. Res., 2005, 18: 129
doi: 10.1179/136404605225023018
|
27 |
Gao Z M, Jie W Q, Liu Y Q, et al. Formation mechanism and coupling prediction of microporosity and inverse segregation: A review [J]. Acta Metall. Sin., 2018, 54: 717
doi: 10.11900/0412.1961.2017.00501
|
|
高志明, 介万奇, 刘永勤 等. 微观孔洞和逆偏析缺陷的形成机理与耦合预测研究进展 [J]. 金属学报, 2018, 54: 717
doi: 10.11900/0412.1961.2017.00501
|
28 |
Sun L X, Li M Q. High temperature behavior of isothermally compressed M50 steel [J]. J. Iron Steel Res. Int., 2015, 22: 969
doi: 10.1016/S1006-706X(15)30098-4
|
29 |
Wu Y C, Jiang H W, Hu Y, et al. Effect of multi-direction forging on carbide evolution of M50 steel [J]. China Metall., 2020, 30(9): 98
|
|
吴玉成, 姜宏伟, 胡 园 等. 多向锻造对M50钢一次碳化物破碎机制的影响 [J]. 中国冶金, 2020, 30(9): 98
|
30 |
Belchenko G I, Gubenko S I. Deformation of non-metallic inclusions during steel rolling [J]. News USSR Acad. Sci. Met., 1983, 4: 80
|
31 |
Antretter T, Fischer F D. Critical shapes and arrangements of carbides in high-speed tool steel [J]. Mater. Sci. Eng., 1997, A237: 6
|
32 |
Zhou B, Shen Y, Chen J, et al. Breakdown behavior of eutectic carbide in high speed steel during hot compression [J]. J. Iron Steel Res. Int., 2011, 18: 41
|
33 |
Di H S, Zhang X M, Wang G D, et al. Spheroidizing kinetics of eutectic carbide in the twin roll-casting of M2 high-speed steel [J]. J. Mater. Process. Technol., 2005, 166: 359
doi: 10.1016/j.jmatprotec.2004.07.085
|
34 |
Sun J. A model for shrinkage of a spherical void in the center of a grain: Influence of lattice diffusion [J]. J. Mater. Eng. Perform., 2002, 11: 322
doi: 10.1361/105994902770344150
|
35 |
Yu H H, Suo Z. An axisymmetric model of pore-grain boundary separation [J]. J. Mech. Phys. Solids, 1999, 47: 1131
doi: 10.1016/S0022-5096(98)00093-3
|
36 |
Zhang H L, Sun J. Diffusive healing of intergranular fatigue microcracks in iron during annealing [J]. Mater. Sci. Eng., 2004, A382: 171
|
37 |
Song M, Du K, Wen S P, et al. In situ electron microscopy investigation of void healing in an Al-Mg-Er alloy at a low temperature [J]. Acta Mater., 2014, 69: 236
doi: 10.1016/j.actamat.2014.02.004
|
38 |
Song M, Du K, Wang C Y, et al. Geometric and chemical composition effects on healing kinetics of voids in Mg-bearing Al alloys [J]. Metall. Mater. Trans., 2016, 47A: 2410
|
39 |
Han J T, Zhao G, Cao Q X. Discovery of inner crack recovery and its structure change in 20MnMo steel [J]. Acta Metall. Sin., 1996, 32: 723
|
|
韩静涛, 赵 钢, 曹起骧. 20MnMo钢内裂纹修复现象的发现及其金属组织的变化 [J]. 金属学报, 1996, 32: 723
|
40 |
Han Y H, Li C S, Ren J Y, et al. Dendrite segregation changes in high temperature homogenization process of as-cast H13 steel [J]. ISIJ Int., 2019, 59: 1893
doi: 10.2355/isijinternational.ISIJINT-2019-148
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|