|
|
Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing |
SUN Laibo1,2, HUANG Lujun2, HUANG Ruisheng1( ), XU Kai1, WU Pengbo1, LONG Weimin3, JIANG Fengchun4, FANG Naiwen1 |
1Harbin Welding Institute Limited Company, China Academy of Machinery Science and Tecchnology Group, Harbin 150028, China 2School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 3State Key Laboratory of New Brazing Materials and Technology, Zhengzhou Research Institute of Mechanical Engineering Co. Ltd., Zhengzhou 450001, China 4Yantai Research Institute of Harbin Engineering University, Yantai 264000, China |
|
Cite this article:
SUN Laibo, HUANG Lujun, HUANG Ruisheng, XU Kai, WU Pengbo, LONG Weimin, JIANG Fengchun, FANG Naiwen. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing. Acta Metall Sin, 2024, 60(3): 273-286.
|
Abstract Additive manufacturing (AM) is a rapidly developing technology that has found widespread use in the manufacturing industry. However, the application with high performance and stability requirements is constrained by its coarse microstructure, which exhibits obvious directionality during the deposition of metal parts. Ultrasonic impact treatment (UIT) has been recognized as an effective strengthening method that can improve the stress state, refine the microstructure, and enhance the overall performance of metal parts fabricated via AM. This paper summarizes the theoretical views and limitations of UIT strengthening regarding surface plastic deformation. Additionally, it elaborates on the mechanism of microstructure refinement and the transformation of columnar dendrites to equiaxed dendrites, influenced by the combined effect of UIT and AM. Finally, the paper outlines the problems and suggestions related to strengthening theory that require further investigation in the process of UIT-assisted AM.
|
Received: 25 October 2022
|
|
Fund: National Key Research and Development Program of China(2021YFB3401100);Heilongjiang Head Goose Action Plan-Advanced Welding Technology Innovation Team of Energy Equipment(201916120);Program of Open Project of the State Key Laboratory of New Brazing Materials and Technology(SKLABFMT202005);High-End Talent Program of China Academy of Machinery Science and Technology Group(202210109) |
Corresponding Authors:
HUANG Ruisheng, professor, Tel: 13936168723, E-mail: huangrs8@163.com
|
1 |
Jiang F C, Sun L B, Huang R S, et al. Effects of heat input on morphology of thin-wall components fabricated by wire and arc additive manufacturing [J]. Adv. Eng. Mater., 2021, 23: 2001443
doi: 10.1002/adem.v23.4
|
2 |
Truby R L, Lewis J A. Printing soft matter in three dimensions [J]. Nature, 2016, 540: 371
doi: 10.1038/nature21003
|
3 |
Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
|
孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
4 |
Tian Y B, Shen J Q, Hu S S, et al. Study of the reaction layer of Ti and Al dissimilar alloys by wire and arc additive manufacturing [J]. Acta Metall. Sin., 2019, 55: 1407
|
|
田银宝, 申俊琦, 胡绳荪 等. 丝材+电弧增材制造钛/铝异种金属反应层的研究 [J]. 金属学报, 2019, 55: 1407
doi: 10.11900/0412.1961.2019.00022
|
5 |
Vafadar A, Guzzomi F, Rassau A, et al. Advances in metal additive manufacturing: A review of common processes, industrial applications, and current challenges [J]. Appl. Sci., 2021, 11: 1213
doi: 10.3390/app11031213
|
6 |
Paolini A, Kollmannsberger S, Rank E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods [J]. Addit. Manuf., 2019, 30: 100894
|
7 |
Emelogu A, Marufuzzaman M, Thompson S M, et al. Additive manufacturing of biomedical implants: A feasibility assessment via supply-chain cost analysis [J]. Addit. Manuf., 2016, 11: 97
|
8 |
Oliveira J P, LaLonde A, Ma J. Processing parameters in laser powder bed fusion metal additive manufacturing [J]. Mater. Des., 2020, 193: 108762
doi: 10.1016/j.matdes.2020.108762
|
9 |
Tan C L, Zhou K S, Ma W Y, et al. Research progress of laser additive manufacturing of maraging steels [J]. Acta Metall. Sin., 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
|
|
谭超林, 周克崧, 马文有 等. 激光增材制造成型马氏体时效钢研究进展 [J]. 金属学报, 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
|
10 |
Sun X J, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
|
|
孙佳孝, 杨 可, 王秋雨 等. 5356铝合金TIG电弧增材制造组织与力学性能 [J]. 金属学报, 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
|
11 |
Fang N W, Wang X X, Xu K, et al. Effect of shielding gas on arc characteristics and microstructure and properties of laser-arc hybrid welding of low nickel stainless steel [J]. Rare Met. Mater. Eng., 2022, 51: 3089
|
|
方乃文, 王星星, 徐 锴 等. 保护气体对低镍不锈钢激光-电弧复合焊电弧特性及组织性能影响 [J]. 稀有金属材料与工程, 2022, 51: 3089
|
12 |
Lu Z Y, Tian H Y, Chen S J, et al. Review on precision control technologies of additive manufacturing hybrid subtractive process [J]. Acta Metall. Sin., 2020, 56: 83
doi: 10.11900/0412.1961.2019.00053
|
|
卢振洋, 田宏宇, 陈树君 等. 电弧增减材复合制造精度控制研究进展 [J]. 金属学报, 2020, 56: 83
doi: 10.11900/0412.1961.2019.00053
|
13 |
Ma J K, Li J J, Wang Z J, et al. Bonding zone microstructure and mechanical properties of forging-additive hybrid manufactured Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2021, 57: 1246
|
|
马健凯, 李俊杰, 王志军 等. 锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能 [J]. 金属学报, 2021, 57: 1246
doi: 10.11900/0412.1961.2020.00416
|
14 |
Li Z X, Liu C M, Xu T Q, et al. Reducing arc heat input and obtaining equiaxed grains by hot-wire method during arc additive manufacturing titanium alloy [J]. Mater. Sci. Eng., 2019, A742: 287
|
15 |
Sun L B, Jiang F C, Huang R S, et al. Anisotropic mechanical properties and deformation behavior of low-carbon high-strength steel component fabricated by wire and arc additive manufacturing [J]. Mater. Sci. Eng., 2020, A787: 139514
|
16 |
Colegrove P A, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling [J]. J. Mater. Process. Technol., 2013, 213: 1782
doi: 10.1016/j.jmatprotec.2013.04.012
|
17 |
Chi J X, Cai Z Y, Wan Z D, et al. Effects of heat treatment combined with laser shock peening on wire and arc additive manufactured Ti17 titanium alloy: Microstructures, residual stress and mechanical properties [J]. Surf. Coat. Technol., 2020, 396: 125908
doi: 10.1016/j.surfcoat.2020.125908
|
18 |
Hönnige J R, Davis A E, Ho A, et al. The effectiveness of grain refinement by machine hammer peening in high deposition rate wire-arc AM Ti-6Al-4V [J]. Metall. Mater. Trans., 2020, 51A: 3692
|
19 |
Ma Q S, Chen H Z, Ren N N, et al. Effects of ultrasonic vibration on microstructure, mechanical properties, and fracture mode of Inconel 625 parts fabricated by cold metal transfer arc additive manufacturing [J]. J. Mater. Eng. Perform., 2021, 30: 6808
doi: 10.1007/s11665-021-06023-5
|
20 |
Diao M X, Guo C H, Sun Q F, et al. Improving mechanical properties of austenitic stainless steel by the grain refinement in wire and arc additive manufacturing assisted with ultrasonic impact treatment [J]. Mater. Sci. Eng., 2022, A857: 144044
|
21 |
Zhou X M, Mao X Y, Su G Q, et al. The deformation behavior of the gradient nanostructured microstructure of low-carbon steel under the tensile stress [J]. Mater. Sci. Eng., 2022, A844: 143209
|
22 |
Zhou C P, Jiang F C, Xu D, et al. A calculation model to predict the impact stress field and depth of plastic deformation zone of additive manufactured parts in the process of ultrasonic impact treatment [J]. J. Mater. Process. Technol., 2020, 280: 116599
doi: 10.1016/j.jmatprotec.2020.116599
|
23 |
Lv J M, Alexandrov I V, Luo K Y, et al. Microstructural evolution and anisotropic regulation in tensile property of cold metal transfer additive manufactured Ti6Al4V alloys via ultrasonic impact treatment [J]. Mater. Sci. Eng., 2022, A859: 144177
|
24 |
Cui Z Q, Mi Y J, Qiu D, et al. Microstructure and mechanical properties of additively manufactured CrMnFeCoNi high-entropy alloys after ultrasonic surface rolling process [J]. J. Alloys Compd., 2021, 887: 161393
doi: 10.1016/j.jallcom.2021.161393
|
25 |
Zhou C P, Wang J D, Guo C H, et al. Numerical study of the ultrasonic impact on additive manufactured parts [J]. Int. J. Mech. Sci., 2021, 197: 106334
doi: 10.1016/j.ijmecsci.2021.106334
|
26 |
Zhang M X, Liu C M, Shi X Z, et al. Residual stress, defects and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted selective laser melting [J]. Appl. Sci., 2016, 6: 304
doi: 10.3390/app6110304
|
27 |
Xing X D, Duan X M, Jiang T T, et al. Ultrasonic peening treatment used to improve stress corrosion resistance of AlSi10Mg components fabricated using selective laser melting [J]. Metals, 2019, 9: 103
doi: 10.3390/met9010103
|
28 |
Li Y P, Wang C R, Du X D, et al. Research status and quality improvement of wire arc additive manufacturing of metals [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 969
doi: 10.1016/S1003-6326(23)66160-6
|
29 |
Walker P, Malz S, Trudel E, et al. Effects of ultrasonic impact treatment on the stress-controlled fatigue performance of additively manufactured DMLS Ti-6Al-4V alloy [J]. Appl. Sci., 2019, 9: 4787
doi: 10.3390/app9224787
|
30 |
Lesyk D A, Martinez S, Mordyuk B N, et al. Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress [J]. Surf. Coat. Technol., 2020, 381: 125136
doi: 10.1016/j.surfcoat.2019.125136
|
31 |
Wang Y C, Roy S, Choi H, et al. Cracking suppression in additive manufacturing of hard-to-weld nickel-based superalloy through layer-wise ultrasonic impact peening [J]. J. Manuf. Process., 2022, 80: 320
doi: 10.1016/j.jmapro.2022.05.041
|
32 |
Panin A V, Kazachenok M S, Dmitriev A I, et al. The effect of ultrasonic impact treatment on deformation and fracture of electron beam additive manufactured Ti-6Al-4V under uniaxial tension [J]. Mater. Sci. Eng., 2022, A832: 142458
|
33 |
Daavari M, Vanini S A S. Corrosion fatigue enhancement of welded steel pipes by ultrasonic impact treatment [J]. Mater. Lett., 2015, 139: 462
doi: 10.1016/j.matlet.2014.10.141
|
34 |
Panin S V, Sergeev V P, Pochivalov Y I, et al. Increase of wear-resistance of 30CrMnSi2Ni steel by ultrasonic impact and ion-beam treatments [A]. Proceedings of the 2008 3rd International Forum on Strategic Technologies [C]. Novosibirsk: IEEE, 2008: 83
|
35 |
Statnikov E S, Muktepavel V O. Technology of ultrasound impact treatment as a means of improving the reliability and endurance of welded metal structures [J]. Weld. Int., 2003, 17: 741
doi: 10.1533/wint.2003.3192
|
36 |
Berg-Pollack A, Voellmecke F J, Sonsino C M. Fatigue strength improvement by ultrasonic impact treatment of highly stressed spokes of cast aluminium wheels [J]. Int. J. Fatigue, 2011, 33: 513
doi: 10.1016/j.ijfatigue.2010.09.017
|
37 |
Guo C B, Wang Z J, Wang D P, et al. Numerical analysis of the residual stress in ultrasonic impact treatment process with single-impact and two-impact models [J]. Appl. Surf. Sci., 2015, 347: 596
doi: 10.1016/j.apsusc.2015.04.128
|
38 |
Mordyuk B N, Prokopenko G I. Ultrasonic impact peening for the surface properties' management [J]. J. Sound Vib., 2007, 308: 855
doi: 10.1016/j.jsv.2007.03.054
|
39 |
Roland T, Retraint D, Lu K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment [J]. Scr. Mater., 2006, 54: 1949
doi: 10.1016/j.scriptamat.2006.01.049
|
40 |
Xu L Y, Gao Y L, Zhao L, et al. Ultrasonic micro-forging post-treatment assisted laser directed energy deposition approach to manufacture high-strength Hastelloy X superalloy [J]. J. Mater. Process. Technol., 2022, 299: 117324
doi: 10.1016/j.jmatprotec.2021.117324
|
41 |
He B L, Xiong L, Jiang M M, et al. Surface grain refinement mechanism of SMA490BW steel cross joints by ultrasonic impact treatment [J]. Int. J. Min. Metall. Mater., 2017, 24: 410
doi: 10.1007/s12613-017-1421-6
|
42 |
Yang X J, Zhou J X, Liang X. Study on plastic damage of AISI 304 stainless steel induced by ultrasonic impact treatment [J]. Mater. Des., 2012, 36: 477
doi: 10.1016/j.matdes.2011.11.023
|
43 |
Kubin L P, Mortensen A. Geometrically necessary dislocations and strain- gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
doi: 10.1016/S1359-6462(02)00335-4
|
44 |
He B L, Yu X Y, Yu H H, et al. Grain refining mechanism and fatigue properties of bogie welded cruciform joints treated by ultrasonic impact [J]. Curr. Nanosci., 2012, 8: 17
doi: 10.2174/1573413711208010017
|
45 |
Panin S V, Pochivalov Y I, Perevalova O B, et al. Effect of ultrasonic impact treatment on mechanical properties of 3D-printed Ti-6Al-4V titanium alloy parts [J]. AIP Conf. Proc., 2019, 2141: 040012
|
46 |
Li M Y, Zhang Q, Han B, et al. Investigation on microstructure and properties of Al x CoCrFeMnNi high entropy alloys by ultrasonic impact treatment [J]. J. Alloys Compd., 2020, 816: 152626
doi: 10.1016/j.jallcom.2019.152626
|
47 |
Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. End. Perform., 2014, 23: 1917
|
48 |
Collins P C, Brice D A, Samimi P, et al. Microstructural control of additively manufactured metallic materials [J]. Annu. Rev. Mater. Res., 2016, 46: 63
doi: 10.1146/matsci.2016.46.issue-1
|
49 |
Sames W J, List F A, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing [J]. Int. Mater. Rev., 2016, 61: 315
doi: 10.1080/09506608.2015.1116649
|
50 |
Yang Y C, Jin X, Liu C M, et al. Residual stress, mechanical properties, and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted wire and arc additive manufacturing [J]. Metals, 2018, 8: 934
doi: 10.3390/met8110934
|
51 |
Bezençon C, Schnell A, Kurz W. Epitaxial deposition of MCrAlY coatings on a Ni-base superalloy by laser cladding [J]. Scr. Mater., 2003, 49: 705
doi: 10.1016/S1359-6462(03)00369-5
|
52 |
Kurz W, Bezençon C, Gäumann M. Columnar to equiaxed transition in solidification processing [J]. Sci. Technol. Adv. Mater., 2001, 2: 185
doi: 10.1016/S1468-6996(01)00047-X
|
53 |
Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: Processing-microstructure maps [J]. Acta Mater., 2001, 49: 1051
doi: 10.1016/S1359-6454(00)00367-0
|
54 |
Wang F D, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J]. Metall. Mater. Trans., 2013, 44A: 968
|
55 |
Wann C R, Li Y P, Tian W, et al. Influence of ultrasonic impact treatment and working current on microstructure and mechanical properties of 2219 aluminium alloy wire arc additive manufacturing parts [J]. J. Mater. Res. Technol., 2022, 21: 781
doi: 10.1016/j.jmrt.2022.09.055
|
56 |
Wang Y C, Shi J. Microstructure and properties of Inconel 718 fabricated by directed energy deposition with in-situ ultrasonic impact peening [J]. Metall. Mater. Trans., 2019, 50B: 2815
|
57 |
Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel [J]. Acta Mater., 2010, 58: 5354
doi: 10.1016/j.actamat.2010.06.010
|
58 |
Zhang H W, Hei Z K, Liu G, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Mater., 2003, 51: 1871
doi: 10.1016/S1359-6454(02)00594-3
|
59 |
Wang M Y, Xin R L, Wang B S, et al. Effect of initial texture on dynamic recrystallization of AZ31 Mg alloy during hot rolling [J]. Mater. Sci. Eng., 2011, A528: 2941
|
60 |
Wang X, Brünger E, Gottstein G. The role of twinning during dynamic recrystallization in alloy 800H [J]. Scr. Mater., 2002, 46: 875
doi: 10.1016/S1359-6462(02)00072-6
|
61 |
Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: A review [J]. Mater. Sci. Eng., 1997, A238: 219
|
62 |
Trufyakov V, Mikheev P, Kudryavtsev Y. Fatigue Strength of Welded Structures, Residual Stresses and Improvement Treatments [M]. London: Harwood Academic Publishers GmbH, 1995: 100
|
63 |
Holopov Y V. Treatment of metal welded joints by ultrasound aimed on residual stress decreasing [J]. Svar. Proiz., 1973, 12: 200
|
64 |
Prokopenko G, Kuzmich G. The accumulation of plastic strain in metals under multiple impulse loading of various frequencies [J]. Phys. Met., 1994, 13: 464
|
65 |
Statnikov E S, Korolkov O V, Vityazev V N. Physics and mechanism of ultrasonic impact [J]. Ultrasonics, 2006, 44: e533
doi: 10.1016/j.ultras.2006.05.119
|
66 |
Wang Y C, Shi J. Recrystallization behavior and tensile properties of laser metal deposited Inconel 718 upon in-situ ultrasonic impact peening and heat treatment [J]. Mater. Sci. Eng., 2020, A786: 139434
|
67 |
Mohtadi-Bonab M A, Eskandari M, Szpunar J A. Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking [J]. Mater. Sci. Eng., 2015, A620: 97
|
68 |
AlMangour B, Grzesiak D, Yang J M. Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting [J]. Mater. Des., 2016, 96: 150
doi: 10.1016/j.matdes.2016.02.022
|
69 |
Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718 [J]. Mater. Sci. Eng., 2016, A678: 137
|
70 |
Siu K W, Ngan A H W, Jones I P. New insight on acoustoplasticity-ultrasonic irradiation enhances subgrain formation during deformation [J]. Int. J. Plast., 2011, 27: 788
doi: 10.1016/j.ijplas.2010.09.007
|
71 |
Kudryavtsev Y, Kleiman J, Lobanov L, et al. Fatigue life improvement of welded elements by ultrasonic peening [EB/OL].
|
72 |
McAndrew A R, Rosales M A, Colegrove P A, et al. Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement [J]. Addit. Manuf., 2018, 21: 340
|
73 |
Tomio Y, Furuhara T, Maki T. Effect of cooling rate on superelasticity and microstructure evolution in Ti-10V-2Fe-3Al and Ti-10V-2Fe-3Al-0.2N alloys [J]. Mater. Trans., 2009, 50: 2731
doi: 10.2320/matertrans.MA200909
|
74 |
Furuhara T, Takayama N, Miyamoto G. Key factors in grain refinement of martensite and bainite [J]. Mater. Sci. Forum, 2010, 638-642: 3044
doi: 10.4028/www.scientific.net/MSF.638-642
|
75 |
Miao C L, Shang C J, Wang X M, et al. Microstructure and toughness of HAZ in X80 pipeline steel with high Nb content [J]. Acta Metall. Sin., 2010, 46: 541
doi: 10.3724/SP.J.1037.2009.00803
|
|
缪成亮, 尚成嘉, 王学敏 等. 高Nb X80管线钢焊接热影响区显微组织与韧性 [J]. 金属学报, 2010, 46: 541
doi: 10.3724/SP.J.1037.2009.00803
|
76 |
Sun L B, Guo C H, Huang R S, et al. Effect and mechanism of inter-layer ultrasonic impact strengthening on the anisotropy of low carbon steel components fabricated by wire and arc additive manufacturing [J]. Mater. Sci. Eng., 2022, A848: 143382
|
77 |
Schaller R, Rivière A. Recrystallization [J]. Mater. Sci. Forum, 2001, 366-368: 276
doi: 10.4028/www.scientific.net/MSF.366-368
|
78 |
Estrin E I. Recrystallization-induced plasticity [J]. Phys. Met. Metall., 2006, 102: 324
doi: 10.1134/S0031918X06090134
|
79 |
Monroe J A, Gehring D, Karaman I, et al. Tailored thermal expansion alloys [J]. Acta Mater., 2016, 102: 333
doi: 10.1016/j.actamat.2015.09.012
|
80 |
Liu G, Li J, Zhang S G, et al. Dilatometric study on the recrystallization and austenization behavior of cold-rolled steel with different heating rates [J]. J. Alloys Compd., 2016, 666: 309
doi: 10.1016/j.jallcom.2016.01.137
|
81 |
Chakravarthy S S, Curtin W A. Effect of source and obstacle strengths on yield stress: A discrete dislocation study [J]. J. Mech. Phys. Solids, 2010, 58: 625
doi: 10.1016/j.jmps.2010.03.004
|
82 |
Antonysamy A A, Meyer J, Prangnell P B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting [J]. Mater. Charact., 2013, 84: 153
doi: 10.1016/j.matchar.2013.07.012
|
83 |
Dinda G P, Dasgupta A K, Mazumder J. Texture control during laser deposition of nickel-based superalloy [J]. Scr. Mater., 2012, 76: 503
|
84 |
Lin D Y, Xu L Y, Jing H Y, et al. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting [J]. Addit. Manuf., 2020, 32: 101058
|
85 |
Stüwe H P, Padilha A F, Siciliano Jr F. Competition between recovery and recrystallization [J]. Mater. Sci. Eng., 2002, A333: 361
|
86 |
Quested T E, Greer A L. Athermal heterogeneous nucleation of solidification [J]. Acta Mater., 2005, 53: 2683
doi: 10.1016/j.actamat.2005.02.028
|
87 |
Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
|
88 |
Martorano M A, Beckermann C, Gandin C A. A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification [J]. Metall. Mater. Trans., 2003, 34A: 1657
|
89 |
Reinhart G, Mangelinck-Noël N, Nguyen-Thi H, et al. Investigation of columnar-equiaxed transition and equiaxed growth of aluminium based alloys by X-ray radiography [J]. Mater. Sci. Eng., 2005, A413-414: 384
|
90 |
Kad B K, Gebert J M, Perez-Prado M T, et al. Ultrafine-grain-sized zirconium by dynamic deformation [J]. Acta Mater., 2006, 54: 4111
doi: 10.1016/j.actamat.2006.03.053
|
91 |
Vasylyev M A, Chenakin S P, Yatsenko L F. Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy [J]. Acta Mater., 2016, 103: 761
doi: 10.1016/j.actamat.2015.10.041
|
92 |
Petrov Y N, Prokopenko G I, Mordyuk B N, et al. Influence of microstructural modifications induced by ultrasonic impact treatment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy [J]. Mater. Sci. Eng., 2016, C58: 1024
|
93 |
Kar P, Wang K, Liang H. Force-dominated non-equilibrium oxidation kinetics of tantalum [J]. Electrochim. Acta, 2008, 53: 5084
doi: 10.1016/j.electacta.2008.02.034
|
94 |
Singh V, Marya M, Roy I, et al. Surface property enhancement of UNS N07718 and G41400 by ultrasonic impact treatment [J]. Mater. Sci. Forum, 2014, 783-786: 2863
doi: 10.4028/www.scientific.net/MSF.783-786
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|