Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (4): 509-521    DOI: 10.11900/0412.1961.2022.00066
Research paper Current Issue | Archive | Adv Search |
Degradation Mechanism on Corrosion Resistance of High Nb-Containing Zirconium Alloys in Oxygen-Containing Steam
HUANG Jiansong, PEI Wen, XU Shitong, BAI Yong, YAO Meiyi(), HU Lijuan, XIE Yaoping, ZHOU Bangxin
Institute of Materials, Shanghai University, Shanghai 200072, China
Cite this article: 

HUANG Jiansong, PEI Wen, XU Shitong, BAI Yong, YAO Meiyi, HU Lijuan, XIE Yaoping, ZHOU Bangxin. Degradation Mechanism on Corrosion Resistance of High Nb-Containing Zirconium Alloys in Oxygen-Containing Steam. Acta Metall Sin, 2024, 60(4): 509-521.

Download:  HTML  PDF(5997KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In some water-cooled nuclear power reactors, a hydrogenation-deoxygenation device is generally not used to simplify the system and save space, which can increase dissolved oxygen (DO) concentration in primary loop water. The increase in DO concentration will inevitably affect the corrosion resistance of zirconium alloy cladding materials. In particular, DO will accelerate the corrosion of Nb-containing zirconium alloys, and the corrosion rate of zirconium alloys with high Nb content is sensitive to DO concentration. In exploring the deterioration mechanism of the corrosion resistance of high-Nb-containing zirconium alloys in oxygen-containing steam, the corrosion behavior of the Zr-0.75Sn-0.35Fe-0.15Cr-1.0Nb (mass fraction, %) alloy was studied in superheated steam through deoxygenation, with 300 μg/kg of DO and 1000 μg/kg of DO at 400oC and 10.3 MPa. The corrosion behavior was characterized by measuring the mass gain per unit area. SEM was used to observe the fracture morphology of the oxide film; TEM-EDS was used to observe and analyze the morphology, elemental distribution, and crystal structure of the alloy, second-phase particles (SPPs), and oxide film. The elemental distribution on the outer surface of the oxide film was analyzed by XPS, and the valence state of Nb was determined in accordance with the binding energy to analyze the influence of DO on the oxidation behavior of Nb in the oxide film. Results show that the corrosion resistance of the Zr-0.75Sn-0.35Fe-0.15Cr-1.0Nb alloy in superheated steam at 400oC deteriorates with the increase of DO concentration. The deterioration mechanism of the corrosion resistance of the alloy in oxygen-containing steam is proposed. On the one hand, DO accelerates the oxidation of Nb in the oxide film and promotes the conversion of Nb2+ to Nb5+. On the other hand, DO promotes the oxidation of SPPs to m-Nb2O5 (monoclinic) and amorphous phase, thereby promoting the initiation and growth of cracks. These newly generated cracks provide more channels for the diffusion of O2- and other oxidizing ions to accelerate the oxidation of SPPs near the cracks and the microstructural evolution of the oxide film, thereby accelerating the corrosion of the alloy.

Key words:  zirconium alloy      dissolved oxygen      corrosion      microstructure     
Received:  21 February 2022     
ZTFLH:  TG146.4  
Fund: National Natural Science Foundation of China(51871141)
Corresponding Authors:  YAO Meiyi, professor, Tel: (021)56338586, E-mail: yaomeiyi@shu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00066     OR     https://www.ams.org.cn/EN/Y2024/V60/I4/509

Fig.1  TEM image (a) and HAADF image (b) of the Zr-0.75Sn-0.35Fe-0.15Cr-1.0Nb alloy, selected area electron diffraction(SAED) patterns of typical second phase particles (SPPs) (a1, a2), and size distributions of SPPs (c)
Fig.2  Corrosion mass gain curves in the form of natural number coordinates (a) and double logarithmic coordinates (b) of Zr-0.75Sn-0.35Fe-0.15Cr-1.0Nb alloy in superheated steam with DE, 300 μg/kg DO, and 1000 μg/kg DO at 400oC and 10.3 MPa (DE—deoxygenation, DO—dissolved oxygen)
EnvironmentTransitionPre-transitionPost-transition
t0 / dwt0 / (mg·dm-2)k1 / (mg·dm-2·d-n1)n1k2 / (mg·dm-2·d-n2)n2
DE7257.394.780.461.380.86
300 μg·kg-1 DO4048.737.580.431.620.88
1000 μg·kg-1 DO4051.844.670.551.730.89
Table 1  Oxidation kinetic parameters of the alloy corroded in superheated steam with DE, 300 μg/kg DO, and 1000 μg/kg DO at 400oC and 10.3 MPa
Fig.3  SEM images of the fracture morphologies of oxide films on Zr-0.75Sn-0.35Fe-0.15Cr-1.0Nb alloy corroded in superheated steam with DE (a), 300 μg/kg DO (b), and 1000 μg/kg DO (c) at 400oC and 10.3 MPa for 42 d
Fig.4  TEM bright-field images of the cross-sectional microstructure of oxide films on Zr-0.75Sn-0.35Fe-0.15Cr-1.0Nb alloy corroded in superheated steam with DE (a), 300 μg/kg DO (b), and 1000 μg/kg DO (c) at 400oC and 10.3 MPa for 42 d
Fig.5  HAADF images and corresponding EDS mapping of the complete region (a) and region 1 magnification (b) of cross-sectional oxide film on the alloy corroded in superheated steam with DE at 400oC and 10.3 MPa for 42 d
Fig.6  HRTEM images and FFT analyses (insets) of the SPPs marked in Fig.5b, including SPP1 (a-e), SPP2 (f-h), and SPP3 (i), wherein magnifications of regions B-E (b-e) and G, H (g, h)
Fig.7  HAADF images and corresponding EDS mappings of the complete region (a), region 1 (b), and region 2 (c) of cross-sectional oxide film on the alloy corroded in superheated steam with 300 μg/kg DO at 400oC and 10.3 MPa for 42 d
Fig.8  HRTEM images and FFT analyses (insets) of SPPs marked in Figs.7b and c, including SPP1 (a-c), SPP2 (d-f), and SPP3 (g-i), wherein magnifications of regions B, C (b, c), E, F (e, f), and H, I (h, i)
Fig.9  HAADF images and corresponding EDS mappings of complete region (a), region 1 (b), and region 2 (c) of cross-sectional oxide film on the alloy corroded in superheated steam with 1000 μg/kg DO at 400oC and 10.3 MPa for 42 d
Fig.10  HRTEM images and FFT analyses (insets) of SPPs marked in Figs.9b and c, including SPP1 (a-c), SPP2 (d-f), and SPP3 (g-h1), wherein magnifications of regions B, C (b, c), E, F (e, f), H (h), and FFT analysis corresponding to the region in Fig.10h (h1)
EnvironmentSPPsD / μmOxidation product
DESPP10.1t-ZrO2, m-Nb2O5
SPP20.7m-Nb2O5
SPP32.0Amorphous
300 μg·kg-1SPP11.0-
SPP20.4Amorphous, m-Nb2O5
SPP32.3m-ZrO2, m-Nb2O5
1000 μg·kg-1SPP10.1m-Nb2O5
SPP20.3m-Nb2O5
SPP32.8Amorphous
Table 2  Oxidation products of SPPs in the oxide film on the alloy corroded in superheated steam with DE, 300 μg/kg DO, and 1000 μg/kg DO at 400oC and 10.3 MPa for 42 d
Fig.11  XPS fine spectra and peak fitting of Nb element on the oxide film surface formed on the 300 DO/160 d (a) and 1000 DO/130 d (b) specimens after Ar+ sputtered for 180 s
Time300 DO / 160 d1000 DO / 130 d
sNb2+Nb5+Nb2+Nb5+
04.9895.052.3997.61
909.3290.681.7598.25
18014.2985.710.9599.05
Table 3  Proportions of different valence states of Nb element in the oxide film on 300 DO/160 d and 1000 DO/130 d specimens
1 Cao Y L, Wang S W, Xiong W B, et al. Features and application analysis of the small modular reactors[J]. Nucl. Electron. Detect. Technol., 2014, 34: 801
曹亚丽, 王韶伟, 熊文彬 等. 小型模块化反应堆特性及应用分析[J]. 核电子学与探测术, 2014, 34: 801
2 Bradhurst D H, Shirvington P J, Heuer P M. The effects of radiation and oxygen on the aqueous oxidation of zirconium and its alloys at 290oC[J]. J. Nucl. Mater., 1973, 46: 53
doi: 10.1016/0022-3115(73)90122-0
3 Motta A T, Comstock R J, Count A. Corrosion of zirconium alloys used for nuclear fuel cladding[J]. Annu. Rev. Mater. Res., 2015, 45: 311
doi: 10.1146/matsci.2015.45.issue-1
4 Kumar M K, Aggarwal S, Beniwal D, et al. Localized oxidation of zirconium alloys in high temperature and pressure oxidizing environments of nuclear reactors[J]. Mater. Corros., 2014, 65: 244
5 Cox B. Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys[J]. J. Nucl. Mater., 2005, 336: 331
doi: 10.1016/j.jnucmat.2004.09.029
6 Jeong Y H, Park S Y, Lee M H, et al. Out-of-pile and in-pile performance of advanced zirconium alloys (HANA) for high burn-up fuel[J]. J. Nucl. Sci. Mater., 2006, 43: 977
7 Zhou B X, Yao M Y, Li Z K, et al. Optimization of N18 zirconium alloy for fuel cladding of water reactors[J]. J. Mater. Sci. Technol., 2012, 28: 606
8 Liu J Z. Structure Nuclear Materials[M]. Beijing: Chemical Industry Press, 2007: 56
刘建章. 核结构材料[M]. 北京: 化学工业出版社, 2007: 56
9 Kim Y S, Kim S K, Bang J G, et al. Effects of Sn and Nb on massive hydriding kinetics of Zr ± XSn ± YNb alloy[J]. J. Nucl. Mater., 2000, 279: 335
doi: 10.1016/S0022-3115(99)00281-0
10 Kim H G, Yong H J, Kim T H. Effect of isothermal annealing on the corrosion behavior of Zr-xNb alloys[J]. J. Nucl. Mater., 2004, 326: 125
doi: 10.1016/j.jnucmat.2004.01.015
11 Dai J X, Gong Z M, Xu S T, et al. In situ study on the initial oxidation behavior of zirconium alloys with near-ambient pressure XPS[J]. Acta Phys. Chim. Sin., 2022, 38: 76
戴久翔, 龚忠苗, 徐诗彤 等. 锆合金初始氧化行为的原位近常压XPS研究[J]. 物理化学学报, 2022, 38: 76
12 Jeong Y H, Kim H G, Kim D J, et al. Influence of Nb content in the α-matrix on the corrosion behavior of Zr-xNb binary alloys[J]. J. Nucl. Mater., 2003, 323: 72
doi: 10.1016/j.jnucmat.2003.08.031
13 Wang B Y, Zhou B X, Wang Z, et al. Corrosion resistance of Zr-0.72Sn-0.32Fe-0.14Cr-xNb alloys in 500oC superheated steam[J]. Acta. Metall. Sin., 2015, 51: 1545
王波阳, 周邦新, 王 桢 等. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500℃过热蒸汽中的耐腐蚀性能[J]. 金属学报, 2015, 51: 1545
doi: 10.11900/0412.1961.2015.00254
14 Wu Y, Chen B, Lin X D, et al. Corrosion behavior of 90Nb-10Zr alloy in 500oC superheated steam[J]. Rare. Met. Mater. Eng., 2021, 50: 4437
吴 悦, 陈 兵, 林晓冬 等. 90Nb-10Zr合金在500℃过热蒸气中的腐蚀行为[J]. 稀有金属材料与工程, 2021, 50: 4437
15 Yao M Y, Zhou B X. Mechanism of the accelerated corrosion of Zr-Nb alloys in lithiated water from the viewpoint of β-Nb oxidation[J]. J. Shanghai Univ.: Nat. Sci. Ed., 2020, 26: 681
姚美意, 周邦新. 从β-Nb氧化角度探究Zr-Nb系锆合金在LiOH水溶液中腐蚀加速的机理[J]. 上海大学学报(自然科学版), 2020, 26: 681
doi: 10.12066/j.issn.1007-2861.2258
16 Xu S T, Huang J S, Pei W, et al. Effect of oxygen content in 400oC superheated steam on the corrosion resistance of Zr-xSn-0.35Fe-0.15Cr-0.15Nb alloys[J]. Corros. Sci., 2022, 198: 110135
doi: 10.1016/j.corsci.2022.110135
17 Kumar M K, Aggarwal S, Kain V, et al. Effect of dissolved oxygen on oxidation and hydrogen pick up behaviour—Zircaloy vs Zr-Nb alloys[J]. Nucl. Eng. Des., 2010, 240: 985
doi: 10.1016/j.nucengdes.2009.12.021
18 Wei T G, Lin J K, Long C S, et al. Effect of dissolved oxygen in steam on the corrosion behaviors of zirconium alloys[J]. Acta. Metall. Sin., 2016, 52: 209
doi: 10.11900/0412.1961.2015.00219
韦天国, 林建康, 龙冲生 等. 蒸汽中的溶解氧对锆合金腐蚀行为的影响[J]. 金属学报, 2016, 52: 209
doi: 10.11900/0412.1961.2015.00219
19 Liu Q D, Zhang H, Zeng Q F, et al. Pre-transition corrosion behavior of SZA-4 and ZIRLO alloys in dissolved oxygen aqueous condition at 360oC[J]. J. Mech. Eng. 2019, 55(8): 88
刘庆冬, 张 浩, 曾奇锋 等. SZA-4和ZIRLO锆合金在360℃含氧水环境中的腐蚀行为[J]. 机械工程学报, 2019, 55(8): 88
doi: 10.3901/JME.2019.08.088
20 Qin W, Nam C, Li H L, et al. Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance[J]. Acta Mater., 2007, 55: 1695
doi: 10.1016/j.actamat.2006.10.030
21 Olsson C O A, Landolt D. Atmospheric oxidation of a Nb-Zr alloy studied with XPS[J]. Corros. Sci., 2004, 46: 213
doi: 10.1016/S0010-938X(03)00139-2
22 Hauffe K. Oxidation of Metal.[M]. New York: Plenum Press, 1965: 176
23 Li M S. High Temperature Corrosion of Metal[M]. Beijing: Metallurgical Industry Press, 2001: 55
李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001: 55
24 Li T F. High Temperature Oxidation and Thermal Corrosion in Metals[M]. Beijing: Chemical Industry Press, 2003: 18
李铁藩. 金属高温氧化和热腐蚀.[M]. 北京: 化学工业出版社, 2003: 18
25 Cao X X, Yao M Y, Peng J C, et al. Corrosion behavior of Zr(Fe x, Cr1- x)2 alloys in 400oC superheated steam[J]. Acta Metall. Sin, 2011, 47: 882
曹潇潇, 姚美意, 彭建超 等. Zr(Fe x, Cr1- x)2合金在400℃过热蒸汽中的腐蚀行为[J]. 金属学报, 2011, 47: 882
doi: 10.3724/SP.J.1037.2011.00251
26 Yang W D. Reactor Materials Science.[M]. 2nd Ed., Beijing: Atomic Energy Press, 2006: 123
杨文斗. 反应堆材料学[M]. 第二版, 北京: 原子能出版社, 2006: 123
27 Zhou B X, Li Q, Yao M Y, et al. Microstructure of oxide films formed on zircaloy-4[J]. Corros. Prot., 2009, 30: 589
周邦新, 李 强, 姚美意 等. Zr-4合金氧化膜的显微组织研究[J]. 腐蚀与防护, 2009, 30: 589
28 Liu W Q, Li Q, Zhou B X, et al. Effect of heat treatment on the corrosion resistance for new zirconium-based alloy[J]. Nucl. Power Eng., 2005, 26: 249
刘文庆, 李 强, 周邦新 等. 热处理制度对N18新锆合金耐腐蚀性能的影响[J]. 核动力工程, 2005, 26: 249
[1] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
[2] CAI Jie, GAO Jie, HUA Yinqun, YE Yunxia, GUAN Qingfeng, ZHANG Xiaofeng. Effect of High-Current Pulsed Electron Beam Irradiation on Microstructure and Properties of MCrAlY Coating Prepared by Low-Pressure Plasma Spraying[J]. 金属学报, 2024, 60(4): 495-508.
[3] FAN Lihua, LI Jinlin, SUN Jiudong, LV Mengtian, WANG Qing, DONG Chuang. Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys[J]. 金属学报, 2024, 60(4): 453-463.
[4] SUN Laibo, HUANG Lujun, HUANG Ruisheng, XU Kai, WU Pengbo, LONG Weimin, JIANG Fengchun, FANG Naiwen. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing[J]. 金属学报, 2024, 60(3): 273-286.
[5] NI Mingjie, LIU Renci, ZHOU Haohao, YANG Chao, GE Shuyu, LIU Dong, SHI Fengling, CUI Yuyou, YANG Rui. Influence of Grinding Depth on the Surface Integrity and Fatigue Property of γ-TiAl Alloy[J]. 金属学报, 2024, 60(2): 261-272.
[6] ZHANG Chao, XIONG Zhiping, YANG Dezhen, CHENG Xingwang. Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels[J]. 金属学报, 2024, 60(1): 69-79.
[7] ZENG Yunpeng, YAN Wei, SHI Xianbo, YAN Maocheng, SHAN Yiyin, YANG Ke. Effect of Copper Content on the MIC Resistance in Pipeline Steel[J]. 金属学报, 2024, 60(1): 43-56.
[8] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
[9] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[10] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[11] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[12] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[13] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[14] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[15] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
No Suggested Reading articles found!