Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (12): 1531-1537    DOI: 10.11900/0412.1961.2015.00115
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND WEAR RESISTANCE OF Ti/TiN MULTILAYER FILMS DEPOSITED BY MAGNETRON SPUTTERING
Wenfang CUI(),Dong CAO,Gaowu QIN
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819
Cite this article: 

Wenfang CUI,Dong CAO,Gaowu QIN. MICROSTRUCTURE AND WEAR RESISTANCE OF Ti/TiN MULTILAYER FILMS DEPOSITED BY MAGNETRON SPUTTERING. Acta Metall Sin, 2015, 51(12): 1531-1537.

Download:  HTML  PDF(3291KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ti and Ti alloys with low elastic modulus, good mechanical properties and biocompatibility have been widely used for dental implant, arthroplasty and internal fixation material in spinal fusion. But the poor wear resistance of Ti and Ti alloys generally results in the aseptic loosening of the implants. TiN coating has good chemical stability and biocompatibility in physiological environment and plays an important role in improving the corrosion wear performance of Ti and Ti alloys. However, the adhesion strength of TiN film prepared by traditional technologies does not meet the requirement of long service life of the implants. In this work, the alternating Ti/TiN multilayer films were prepared by magnetron sputtering technology with constant Ti layer thickness and varying TiN layer thickness. The cycling periods were designed to be 1, 3, 6, 9, and 12. The total depositing time was 185 min. The main aims of this investigation were to clarify the effects of the cycling periods on the surface morphologies, hardness, bonding strength, friction and abrasion behavior in simulated body fluid of Ti/TiN multilayer films. The results show that the total thickness of Ti/TiN multilayer film is in the range of 5.5~6.0 mm. (111)TiN preferred orientation is found in TiN monolayer film, and (002)TiN preferred orientation is found in Ti/TiN multilayer films. In comparison with TiN monolayer film, Ti/TiN multilayer films exhibit lower surface roughness, higher hardness, bonding strength and wear resistance. The strengthening and toughening of Ti/TiN multilayer films result from the refinement of columnar crystals and interface coherent effect between Ti and TiN layer. The increase of cycling period decreases the hardness of Ti/TiN multilayer film, but is beneficial to enhancing the bonding strength to the substrate. The rupture and exfoliation of thin TiN layer at outer surface promote the abrasive wear and oxidation wear. At the condition of layer thickness ratio 30 for TiN and Ti and 3 cyc, the Ti/TiN multilayer film has good combined mechanical properties. Hardness is 15.8 GPa, adhesion strength is 50 N, coefficient of friction is 0.35, and volume wear rate in Hank's solution is less than 4.0×10-6 mm3/ (Nm).

Key words:  Ti/TiN multilayer film      magnetron sputtering      cycling period      microstructure      wear resistance     
Fund: Supported by Key Project of Scientific and Technological Research of Chinese Ministry of Education (No.313014)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00115     OR     https://www.ams.org.cn/EN/Y2015/V51/I12/1531

Fig.1  XRD spectra of TiN monolayer film and Ti/TiN mutilayer films at various cycles
Fig.2  SEM images of TiN columnar crystals in TiN monolayer film (a) and Ti/TiN multilayer film at 3 cyc (b)
Fig.3  FE-SEM images of surfaces of TiN monolayer film (a) and Ti/TiN multilayer film at 3 cyc (b), cross-section of Ti/TiN multilayer films at 3 cyc (c) and 9 cyc (d)
Cycle / cyc tTi / min tTiN / min dTi / nm dTiN / nm dTiN/dTi
1 10 175 150 5632 47
3 5 55 60 1770 30
6 5 25 60 805 13
9 5 15 60 483 8
12 5 10 60 322 5
Table 1  Deposition times and thicknesses of Ti and TiN layers in TiN monolayer film and Ti/TiN multilayer film at various cycles
Fig.4  Coefficient of friction vs time plots of TiN monolayer and Ti/TiN multilayer films in Hank's solution
Cycle / cyc H0.025 / GPa Fc / N
1 10.8 47
3 15.8 50
6 14.3 87
9 11.2 70
12 13.3 78
Table 2  Hardness and bonding force of Ti/TiN multilayer films at different cycles
Fig.5  Morphologies of worn trails of TiN monolayer and Ti/TiN multilayer films in Hank's solution at 1 cyc (a), 3 cyc (b), 6 cyc (c), 9 cyc (d) (Arrow in Fig.5d indicates exfoliation of TiN layer at outer surface)
[1] Huang H H, Hsua C H, Pana S J, Heb J L, Chen C C, Lee T L. Appl Surf Sci, 2005; 244: 252
[2] Cheng Y, Zheng Y F. Surf Coat Technol, 2007; 201: 6869
[3] Jeong Y H, Lee C H, Chung C H, Son M K, Choe H C. Surf Coat Technol, 2014; 243: 71
[4] Zalnezhad E, Sarhan A A D, Hamdi M. Mater Sci Eng, 2013; A559: 436
[5] Zhang X H, Liu D X. Trans Nonferrous Met Soc China, 2009; 19: 557
[6] Yu X, Wang C B, Liu Y, Yu D Y. Acta Metall Sin, 2006; 42: 662
[6] (于 翔, 王成彪, 刘 阳, 于德洋. 金属学报, 2006; 42: 662)
[7] Liu C L, Lin G Q, Yang D Z, Qi M. Surf Coat Technol, 2006; 200: 4011
[8] Cheng Y, Zheng Y F. Mater Lett, 2006; 60: 2243
[9] Shao A L, Cheng Y, Zhou Y, Li M, Xi T F, Zheng Y F, Wei S C, Zhang D Y. Surf Coat Technol, 2013; 228: S257
[10] Liu T W, Dong C, Wu S, Tang K, Wang J Y, Jia J P. Surf Coat Technol, 2007; 201: 6737
[11] Shao H H, Peng Y T, Jiang X Y, Liu X L, Chen C, Zhu Z H. Funct Mater, 2014; 45: 14145
[11] (邵红红, 彭玉婷, 姜秀英, 刘雪丽, 陈 成, 朱姿虹. 功能材料, 2014; 45: 14145)
[12] Gong H F, Shao T M, Zhang C H, Xu J. J Inorg Mater, 2008; 23: 758
[12] (龚海飞, 邵天敏, 张晨辉, 徐 军. 无机材料学报, 2008; 23: 758)
[13] Serro A P, Completo C, Cola?o R, Santos F D, Lobato da Silva C, Cabral J M S, Araújo H, Pires E, Saramago B. Surf Coat Technol, 2009; 203: 3701
[14] Lin N M, Huang X B, Zhang X Y, Fan A L, Qin L, Tang B. Appl Surf Sci, 2012; 258: 7047
[15] Liu C L, Chu P K, Lin G Q, Yang D Z. Corros Sci, 2007; 49: 3783
[16] Wang L, Su J F, Nie X. Surf Coat Technol, 2010; 205: 1599
[17] Zhang S, Sun D, Fu Y, Du H. Surf Coat Technol, 2003; 167: 113
[18] Zhang G J, Wang T, Chen H L. Surf Coat Technol, 2015; 261: 156
[19] Zhang S, Fu Y, Du H, Zeng X T, Liu Y C. Surf Coat Technol, 2002; 162: 42
[20] Rebholz C, Monclus M A, Baker M A, Mayrhofer P H, Gibson P N, Leyland A, Matthews A. Surf Coat Technol, 2007; 201: 6078
[21] Xu X M, Wang J, Zhao Y, Zhang Q Y. Acta Phys Sin, 2006; 55: 5380
[21] (徐晓明, 王 娟, 赵 阳, 张庆瑜. 物理学报, 2006; 55: 5380)
[22] Zheng J Y, Hao J Y, Liu X Q, Gong Q Y, Liu W M. Surf Coat Technol, 2012; 209: 110
[23] Yip S. Nature, 1998; 391: 532
[24] Zhou D P, Peng H, Zhu L, Guo H B, Gong S K. Surf Coat Technol, 2014; 258: 102
[25] Naghibi S A, Raeissi K, Fathi M H. Mater Chem Phys, 2014; 148: 614
[26] Park J J, Choe H C, Ko Y M. Mater Sci Forum, 2007; 539-543: 1270
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!