Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (6): 927-934    DOI: 10.11900/0412.1961.2017.00406
Orginal Article Current Issue | Archive | Adv Search |
Influences of Target Peak Current Density on the Microstructure and Mechanical Properties of TiN Films Deposited by Dual Pulsed Power Magnetron Sputtering
Huiying SHI, Chao YANG(), Bailing JIANG, Bei HUANG, Di WANG
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Cite this article: 

Huiying SHI, Chao YANG, Bailing JIANG, Bei HUANG, Di WANG. Influences of Target Peak Current Density on the Microstructure and Mechanical Properties of TiN Films Deposited by Dual Pulsed Power Magnetron Sputtering. Acta Metall Sin, 2018, 54(6): 927-934.

Download:  HTML  PDF(5907KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The low kinetic energy and low ionization rate of deposited particle of traditional magnetron sputtering led to low density and poor adhesion of TiN film. The peak current density between cathodic target and anodic chamber was increased several times through the adoption of pulsed power supply mode with low duty cycle, which further enhanced kinetic energy and ionization rate of deposited particle. But the average deposition rate of thin film was significantly reduced. Therefore, a design concept of dual pulsed electric field mode was proposed, which allowed to adjust duration time and target peak current density of the dual pulses. It not only enhanced kinetic energy and ionization rate of deposited particle to satisfy the demand of fabrication of high performance film, but also increased the duration time of pulse to achieve high average deposition rate. In the manuscript, TiN films were deposited by dual pulsed power magnetron sputtering with different target peak current densities of the second pulse stage. The microstructure and mechanical properties of TiN films were characterized using XRD, SEM, nanoindentation and microscratch test. It was found that the TiN film deposited under target peak current density of 0.87 A/cm2 exhibited finely dense microstructure with average grain size of 17 nm. Additionally, the hardness and film-substrate adhesion of such film were as high as 29.5 GPa and 30.0 N, respectively.

Key words:  TiN film      dual pulsed power magnetron sputtering      dual pulsed electric field      target peak current density      mechanical property     
Received:  25 September 2017     
ZTFLH:  TG43  
Fund: Supported by National Natural Science Foundation of China (No.51571114)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00406     OR     https://www.ams.org.cn/EN/Y2018/V54/I6/927

Fig.1  Schematics of dual pulsed power magnetron sputtering (DPPMS) (a) and current waveform of dual pulsed power (DPP) (b)
Sample No. d / % D1 / ms D2 / ms Pa1 / W Pa2 / W Ip2 / A id2 / (Acm-2) Ts / ℃
1 40, 40 8 8 300 2200 10.0 0.27 50.9
2 40, 30 8 6 300 2200 15.0 0.41 60.6
3 40, 20 8 4 300 2200 22.5 0.61 63.9
4 40, 10 8 2 300 2200 32.2 0.87 84.5
Table 1  Parameters of TiN films deposited at different target peak current densities
Fig.2  Surface (a, c, e, g) and cross-sectional (b, d, f, h) SEM images of TiN film samples No.1 (a, b), No.2 (c, d), No.3 (e, f) and No.4 (g, h) (Insets in Figs.2a, c, e and g show the enlarged views)
Fig.3  Average and real deposition rates of TiN films
Fig.4  XRD spectra of TiN films
Sample No. H / GPa E / GPa H/E λN/Ti Lc / N
1 10.2 200.6 0.050 1.14 13.2
2 12.5 237.9 0.053 1.15 22.5
3 23.6 284.3 0.083 1.13 26.6
4 29.5 352.4 0.084 1.14 30.0
Table 2  Mechanical properties, N/Ti atomic ratio and critical load of TiN films
Fig.5  OM images of the scratch track of TiN film samples No.1 (a), No.2 (b), No.3 (c) and No.4 (d) (Insets show the enlarged views of the rectangle areas)
[1] Zhang L Q, Yang H S, Pang X L, et al.Microstructure, residual stress, and fracture of sputtered TiN films[J]. Surf. Coat. Technol., 2013, 224: 120
[2] He C L, Zhang J L, Wang J M, et al.Effect of structural defects on corrosion initiation of TiN nanocrystalline films[J]. Appl. Surf. Sci., 2013, 276: 667
[3] Craciun D, Stefan N, Socol G, et al.Very hard TiN thin films grown by pulsed laser deposition[J]. Appl. Surf. Sci., 2012, 260: 2
[4] Kelly P J, Arnell R D.Magnetron sputtering: A review of recent developments and applications[J]. Vacuum, 2000, 56: 159
[5] Weis H, Müggenburg T, Grosse P, et al.Advanced characterization tools for thin films in low-E systems[J]. Thin Solid Films, 1999, 351: 184
[6] Siemroth P, Schülke T.Copper metallization in microelectronics using filtered vacuum arc deposition-principles and technological development [J]. Surf. Coat. Technol., 2000, 133-134: 106
[7] Se J H, Kang T S, Noh D Y.Epitaxial and island growth of Ag/Si (001) by RF magnetron sputtering[J]. J. Appl. Phys., 1997, 81: 6716
[8] Li X Y, Wu W W, Dong H S.Microstructural characterisation of carbon doped CrAlTiN nanoscale multilayer coatings[J]. Surf. Coat. Technol., 2011, 205: 3251
[9] Christou C, Barber Z H.Ionization of sputtered material in a planar magnetron discharge[J]. J. Vac. Sci. Technol., 2000, 18A: 2897
[10] Ricard A, Nouvellon C, Konstantinidis S, et al.Density and temperature in an inductively amplified magnetron discharge for titanium deposition[J]. J. Vac. Sci. Technol., 2002, 20A: 1488
[11] Konstantinidis S, Ricard A, Ganciu M, et al.Measurement of ionic and neutral densities in amplified magnetron discharges by pulsed absorption spectroscopy[J]. J. Appl. Phys., 2004, 95: 2900
[12] Yang C, Jiang B L, Liu Z, et al.Nanocrystalline titanium films deposited via thermal-emission-enhanced magnetron sputtering[J]. Thin Solid Films, 2015, 597: 117
[13] Lin J L, Moore J J, Sproul W D, et al.The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering[J]. Surf. Coat. Technol., 2010, 204: 2230
[14] Arnell R D, Kelly P J, Bradley J W. Recent developments in pulsed magnetron sputtering [J]. Surf. Coat. Technol., 2004, 188-189: 158
[15] Kouznetsov V, Macák K, Schneider J M, et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J]. Surf. Coat. Technol., 1999, 122: 290
[16] Tian M B.Thin Film Technologies and Materials [M]. Beijing: Tsinghua University Press, 2006: 132(田民波. 薄膜技术与薄膜材料 [M]. 北京: 清华大学出版社, 2006: 132)
[17] Yang K.The research on TiN films deposited by magnetron sputtering [D]. Nanjing: Southeast University, 2006(杨凯. 反应磁控溅射法制备TiN薄膜的研究 [D]. 南京: 东南大学, 2006)
[18] Yeh T S, Wu J M, Hu L J.The properties of TiN thin films deposited by pulsed direct current magnetron sputtering[J]. Thin Solid Films, 2008, 516: 7294
[19] Cullity B D, Stock S R.Elements of X-Ray Diffraction[M]. 3rd Ed., London: Prentice-Hall Inc., 2001: 167
[20] Jenkins R, Snyder R.Introduction to X-Ray Powder Diffractometry[M]. New York: Wiley-Interscience, 1996: 89
[21] Fujimura N, Nishihara T, Goto S, et al.Control of preferred orientation for ZnOx films: Control of self-texture[J]. J. Cryst. Growth, 1993, 130: 269
[22] Gu M, Yang F Z, Huang L, et al.XRD study on highly preferred orientation Cu electrodeposit[J]. Electrochemistry, 2002, 8: 282(辜敏, 杨防祖, 黄令等. 高择优取向Cu电沉积层的XRD研究[J]. 电化学, 2002, 8: 282)
[23] Zhao Y H, Guo C Q, Yang W J, et al.TiN films deposition inside stainless-steel tubes using magnetic field-enhanced arc ion plating[J]. Vacuum, 2015, 112: 46
[24] Luo Q S, Yang S, Cooke K E.Hybrid HIPIMS and DC magnetron sputtering deposition of TiN coatings: Deposition rate, structure and tribological properties[J]. Surf. Coat. Technol., 2013, 236: 13
[25] Lin J L, Moore J J, Sproul W D, et al.Modulated pulse power sputtered chromium coatings[J]. Thin Solid Films, 2009, 518: 1566
[26] Nia N S, Savall C, Creus J, et al.On the implication of solute contents and grain boundaries on the Hall-Petch relationship of nanocrystalline Ni-W alloys[J]. Mater. Sci. Eng., 2016, A678: 204
[27] Kohlscheen J, Stock H R, Mayr P. Chemical bonding in magnetron sputtered TiNx coatings and its relation to diamond turnability [J]. Surf. Coat. Technol., 2001, 142-144: 992
[28] Stallard J, Poulat S, Teer D G.The study of the adhesion of a TiN coating on steel and titanium alloy substrates using a multi-mode scratch tester[J]. Tribol. Int., 2006, 39: 159
[29] Lin J L, Moore J J, Mishra B, et al.Effect of asynchronous pulsing parameters on the structure and properties of CrAlN films deposited by pulsed closed field unbalanced magnetron sputtering (P-CFUBMS)[J]. Surf. Coat. Technol., 2008, 202: 1418
[30] Laing K, Hampshire J, Teer D, et al.The effect of ion current density on the adhesion and structure of coatings deposited by magnetron sputter ion plating[J]. Surf. Coat. Technol., 1999, 112: 177
[31] Heinke W, Leylan A, Matthews A, et al.Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion test[J]. Thin Solid films, 1995, 270: 431
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!