Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (12): 1523-1530    DOI: 10.11900/0412.1961.2015.00199
Current Issue | Archive | Adv Search |
EFFECT OF DISCHARGE CHARACTERISTICS OF TARGET ON IONIZATION AND DEPOSITION OF DEPOSITED PARTICLES
Chao YANG1,Bailing JIANG1,2(),Lin FENG1,Juan HAO1
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048
2 School of Materials Science and Engineering, Nanjing Technology University, Nanjing 211816
Cite this article: 

Chao YANG,Bailing JIANG,Lin FENG,Juan HAO. EFFECT OF DISCHARGE CHARACTERISTICS OF TARGET ON IONIZATION AND DEPOSITION OF DEPOSITED PARTICLES. Acta Metall Sin, 2015, 51(12): 1523-1530.

Download:  HTML  PDF(1291KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnetron sputtering ion plating (MAIP) is limited by the low density and low ionization of target atoms, which results in that the films deposited by MAIP have poor compactness, low adhesion and the quick decreasing in thickness along the target-to-substrate distance, so this disadvantages of the film quality and property can not satisfy the harsh need of modern society. Based on the physical gas discharging plasma theory, the gas discharge could be introduced into the glow-arc discharge section between the glow discharge and the arc discharge by increasing the target current density. By means of the collision kinetic energy of Ar+ and the Joule heating effect of electrons, the electrons and atoms could be spontaneously induced to emit by overcoming the surface work function. Thus the deposited particles with a high density, a high energy and a high ionization can be obtained. Two groups of the Ti films were deposited in glow discharge and glow-arc discharge sections respectively. The film thickness at different target-to-substrate distances was measured by the CLSM. The microstructure of films was characterized by XRD, SEM, AFM and TEM. The adhesion between the film and substrate was determined by the microscratch tester. The results showed that the Ti film deposited in the glow-arc section of gas discharge had nanocrystal size, dense structure, uniform thickness, high deposition rate and excellent adhesion.

Key words:  magnetron sputtering ion plating      volt-ampere characteristic of gas discharge      thermal emission      ionization rate     
Fund: Supported by National Natural Science Foundation of China (No.51271144)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00199     OR     https://www.ams.org.cn/EN/Y2015/V51/I12/1523

Fig.1  Schematic of the deposition system and the substrate position from top view
Sample No. I / A i / (Acm-2) U / V P / W p / (Wcm-2) f / kHz T / μs G / (Pas-1) Us / V
1 5 0.083 320 1600 26.67 40 24.5 150 -65
2 8 0.133 350 2800 46.67 40 24.5 150 -65
3 13 0.217 350 4550 75.83 40 24.5 150 -65
4 15 0.250 320 4800 80.00 40 24.5 150 -65
Table 1  Deposition parameters of Ti films
Fig.2  Volt-ampere characteristics curve of the gas discharge
Fig.3  Thicknesses of samples No.1~No.4 at different target-to-substrate distances
Fig.4  XRD spectra of samples No.1~No.4
Fig.5  HRTEM images and SAED patterns (insets) of samples No.1 (a), No.2 (b), No.3 (c) and No.4 (d)
Fig.6  Surface (a, c, e, g) and cross-sectional (b, d, f, h) images of samples No.1 (a, b), No.2 (c, d), No.3 (e, f) and No.4 (g, h)
Fig.7  Critical loads of samples No.1~No.4
Fig.8  Scratch images of samples No.1 (a), No.2 (b), No.3 (c) and No.4 (d)
[1] Yao S S,Li G Y,Hu W B. Surface Science and Technology. Beijing: China Machine Press, 2005: 1
[1] (姚寿山,李戈扬,胡文彬. 表面科学与技术. 北京: 机械工业出版社, 2005: 1)
[2] Zhou H J,Huang M Z. Metal Material Strength. Beijing: Science Press, 1989: 11
[2] (周惠久,黄明志. 金属材料强度学. 北京: 科学出版社, 1989: 11)
[3] Zeng X Y,Wu Y P. Surface Engineering. Beijing: China Machine Press, 2001: 1
[3] (曾晓雁,吴懿平. 表面工程学. 北京: 机械工业出版社, 2001: 1)
[4] Weis H, Muggenburg T, Grosse P, Herlitze L, Friedrich I, Wuttig M. Thin Solid Films, 1999; 351: 184
[5] Siemroth P, Schulke T. Surf Coat Technol, 2000; 106: 133
[6] Se J H, Kang T S, Noh D Y. J Appl Phys, 1997; 81: 6716
[7] Lin J L, Wang B, Ou Y X, Sproul W D, Dahan I, Moore J J. Surf Coat Technol, 2013; 216: 251
[8] Konstantinidis S, Ricard A, Ganciu M, Dauchot J P, Ranea C, Hecq M. J Appl Phys, 2004; 95: 2900
[9] Ricard A, Nouvellon C, Konstantinidis S, Dauchot J P, Wautelet M, Hecq M. J Vac Sci Technol, 2002; 20A: 1488
[10] Dai D H,Zhou K S. Modern Material Surface Technology and Science. Beijing: Metallurgical Industry Press, 2004: 474
[10] (戴达煌,周克崧. 现代材料表面技术科学. 北京: 冶金工业出版社, 2004: 474)
[11] Windows B, Savvides N. J Vac Sci Technol, 1986; 4A: 196
[12] Windows B, Savvides N. J Vac Sci Technol, 1986; 4A: 453
[13] Sproul W D, Rudnik P J, Graham M E. Surf Coat Technol, 1990; 43/44: 270
[14] Thomas J L. Eng Fract Mech, 2014; 123: 2
[15] Tian M B. Thin Film Technology and Membrane Materials. Beijing: TsingHua University Press, 2006: 493
[15] (田民波. 薄膜技术与薄膜材料. 北京: 清华大学出版社, 2006: 493)
[16] Cullity B D,Stock S R. Elements of X-Ray Diffraction. 3nd Ed., London: Prentice-Hall Press, 2001: 167
[17] Jenkin R L. Introduction to X-Ray Diffractometry. New York: John Wiley and Sons Press, 1996: 89
[18] Greene J E, Sundgren L, Hulitman L, Petrov I, Derstrom D B. Appl Phys Lett, 1995; 67: 2928
[19] Goldfarb I, Pelleg J, Zevin L. Thin Solid Films, 1991; 200: 117
[20] Zhao J P, Wang X, Chen Z Y, Yang S Q, Shi T S, Liu H. Appl Phys Lett, 1997; 30: 5
[21] McQuillan A D,McQuillan M K,translated by Feng H Y. Titanium. Beijing: Metallurgical Industry Press, 1960: 136
[21] (McQuillan A D,McQuillan M K著,冯胡叶译. 钛. 北京: 冶金工业出版社, 1960: 136)
[22] Song W X. Metallography. Beijing: Metallurgical Industry Press, 1989: 454
[22] (宋维锡. 金属学. 北京: 冶金工业出版社, 1989: 454)
[23] Tang W Z. The Preparation Principle, Technology and Application. 2nd Ed., Beijing: Metallurgical Industry Press, 2003: 184
[23] (唐伟忠. 薄膜材料制备原理、技术与应用. 第二版, 北京: 冶金工业出版社, 2003: 184)
[24] Hein K W, Leyland A, Matthewsa A. Thin Solid Films, 1995; 270: 431
No related articles found!
No Suggested Reading articles found!