Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (5): 625-631    DOI: 10.11900/0412.1961.2016.00013
Orginal Article Current Issue | Archive | Adv Search |
CYCLIC OXIDATION AND HOT CORROSION BEHAVIORS OF A GRADIENT NiCoCrAlYSi COATING
Xin PENG1,2,Sumeng JIANG3,Xudong SUN1(),Jun GONG3,Chao SUN3
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 AVIC Shenyang Liming Aero-engine (Group) Corporation Ltd., Shenyang 110043, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Xin PENG, Sumeng JIANG, Xudong SUN, Jun GONG, Chao SUN. CYCLIC OXIDATION AND HOT CORROSION BEHAVIORS OF A GRADIENT NiCoCrAlYSi COATING. Acta Metall Sin, 2016, 52(5): 625-631.

Download:  HTML  PDF(1403KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

MCrAlY (M=Ni and/or Co) coatings are widely used as overlays or bond coats for thermal barrier coatings due to their good performance against high temperature oxidation and hot corrosion. Usually, high Al content in the MCrAlY coatings can benefit the performance and lifetimes of the coatings. However, MCrAlY coatings usually contain only restricted Al content because high Al content might lead to brittleness and potential crack. Design of gradient coating can be used to solve the problem, since it can provide a balance between high Al content and high stress bearing ability. Therefore, much attention has been paid to coatings with gradient structures, and these coatings show good oxidation and corrosion resistance. In this work, a gradient and a conventional NiCoCrAlYSi coating were prepared by arc ion plating technique and subsequent annealing treatment. Cyclic oxidation tests of the two coatings were carried out between room temperature and 1000 ℃. The hot corrosion tests of the coatings were performed in two different mixed salts of 75%Na2SO4+25%K2SO4 and 75%Na2SO4+25%NaCl (mass fraction) at 900 ℃. The results indicated that the gradient coating possessed a graded distribution of Al-rich outer layer and Cr-rich inner layer after annealing treatment, and it showed better performance of re-healing alumina scale due to its possession of more β phase as Al reservoir during the cyclic oxidation. The degradation process of the gradient coating was favorably retarded by the formation of Cr(W, Re)-rich precipitates in the interdiffusion zone. In sulphates, the two coatings showed good corrosion resistance. The presence of NaCl aggravated the corrosion extent of the two coatings. Compared with the conventional coating, the gradient coating postponed the formation of internal oxidation and sulfidation, resulting from the gradient distribution of Al-enriched outer layer and Cr-enriched inner layer.

Key words:  gradient coating      arc ion plating      cyclic oxidation      hot corrosion     
Received:  06 January 2016     
ZTFLH:     
Fund: Supported by National Natural Science Foundation of China (No.51001106)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00013     OR     https://www.ams.org.cn/EN/Y2016/V52/I5/625

Material Co Cr Al Re Mo W Nb Si Y C B Ni
Ni-based alloy 9.0 4.5 6.0 3.9 1.8 8.5 1.6 - 0.002 Minor Minor Bal.
NiCoCrAlYSi target 2.0 16.0 19.0 - - - - 0.5 0.500 - - Bal.
Table 1  Nominal compositions of Ni-based alloy and NiCoCrAlYSi target (mass fraction / %)
Fig.1  XRD spectra of as-annealed conventional and gradient NiCoCrAlYSi coatings
Fig.2  Cross-sectional BSE images of as-annealed conventional (a) and gradient (b) NiCoCrAlYSi coatings (TCP—topologically close pack)
Fig.3  Element concentration profiles through the thickness of gradient NiCoCrAlYSi coating after annealing
Fig.4  Cyclic oxidation kinetic curves of conventional and gradient NiCoCrAlYSi coatings from 1000 ℃ to room temperature
Fig.5  XRD spectra of conventional and gradient NiCoCrAlYSi coatings after cyclic oxidation from 1000 ℃ to room temperature for 200 cyc
Fig.6  Cross-sectional BSE images of conventional (a) and gradient (b) NiCoCrAlYSi coatings after cyclic oxidation from 1000 ℃ to room temperature for 200 cyc
Fig.7  Corrosion kinetic curves of conventional and gradient NiCoCrAlYSi coatings in 75%Na2SO4+25%K2SO4 (a) and 75%Na2SO4+25%NaCl (b) at 900 ℃
Fig.8  XRD spectra of conventional and gradient NiCoCrAlYSi coatings after corrosion in 75%Na2SO4+25%K2SO4 at 900 ℃
Fig.9  Cross-sectional BSE images of conventional (a) and gradient (b) NiCoCrAlYSi coatings after corrosion for 100 h in 75%Na2SO4+25%K2SO4 at 900 ℃
Fig.10  XRD spectra of conventional and gradient NiCoCrAlYSi coatings after corrosion for 100 h in 75%Na2SO4+25%NaCl at 900 ℃
Fig.11  Cross-sectional BSE images of conventional (a) and gradient (b) NiCoCrAlYSi coatings after corrosion for 100 h in 75%Na2SO4+25%NaCl at 900 ℃
[1] Li M H, Sun X F, Li J G, Zhang Z Y, Jin T, Guan H R, Hu Z Q.Oxid Met, 2003; 59: 591
[2] Nicholls J R, Stephenson D J.Met Mater, 1991; 7: 156
[3] Goward G W.Surf Coat Technol, 1998; 68: 73
[4] Meetham G W.Mater Sci Technol, 1986; 2: 290
[5] Salam S, Hou P Y, Zhang Y D, Wang H F, Zhang C, Yang Z G.Corros Sci, 2015; 95:143
[6] Srinivasan V, Cheruvu N S, Carr T J, Obrien C M.Mater Manuf Process, 1995; 10: 955
[7] Lee E Y, Chartier D M, Biederman R R, Sisson R D.Surf Coat Technol, 1987; 32: 19
[8] Tang F, Ajdelsztajn L, Schoenung J M.Oxid Met, 2004; 61: 219
[9] Padture N P, Gell M, Jordan E H.Science, 2002; 296: 280
[10] Nicholls J R, Simms N J, Chan W Y, Evans H E.Surf Coat Technol, 2002; 149: 236
[11] Guo M H, Wang Q M, Gong J, Sun C, Huang R F, Wen L S.Corros Sci, 2006; 48: 2750
[12] Jiang S M, Peng X, Bao Z B, Liu S C, Wang Q M, Gong J, Sun C.Corros Sci, 2008; 50: 3213
[13] Wang W X, Jiang S M, Wei G Z, Ma J, Gong J, Sun C.Acta Metall Sin, 2011; 47: 578
[13] (王维新, 姜肃猛, 卫广智, 马军, 宫骏, 孙超. 金属学报, 2011; 47: 578)
[14] Yu D Q, Lu X Y, Ma J, Jiang S M, Liu S C, Gong J, Sun C.Acta Metall Sin, 2012; 48: 759
[14] (于大千, 卢旭阳, 马军, 姜肃猛, 刘山川, 宫骏, 孙超. 金属学报, 2012; 48: 759)
[15] Xu C Z, Jiang S M, Ma J, Gong J, Sun C.Acta Metall Sin, 2009; 45: 964
[15] (徐朝政, 姜肃猛, 马军, 宫骏, 孙超. 金属学报, 2009; 45: 964)
[16] Xu C Z, Jiang S M, Bao Z B, Gong J, Sun C.Corros Sci, 2009; 51: 1467
[17] Gleeson B, Cheung W H, Dacosta W, Young D J.Oxid Met, 1992; 38: 407
[18] Felix P.Deposition and Corrosion in Gas Turbines. London: Applied Science Publish, 1972: 331
[19] Lindblad N R.Oxid Met, 1969; 1: 143
[20] Merchant S M, Notis M R.Mater Sci Eng, 1984; A66: 47
[21] Hancock P.Mater Sci Technol, 1987; 3: 536
[22] Eliaz N, Shemesh G, Latanision R M.Eng Fail Anal, 2002; 9: 31
[23] Rapp R A.Corros Sci, 2002; 44: 209
[24] McKee D W, Shore D A, Lurthra K L.J Electrochem Soc, 1978; 125: 411
[25] Gurrappa I.Oxid Met, 1999; 51: 353
[26] Tsaur C C, Roch J C, Chang Y Y.Mater Chem Phys, 2005; 91: 330
[27] Hossain M K, Saunders S R J.Oxid Met, 1978; 12: 1
[28] Deb D, Iyer S R, Radhakrishnan V M.Mater Lett, 1996; 29: 19
[1] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[2] WANG Di, WANG Dong, XIE Guang, WANG Li, DONG Jiasheng, CHEN Lijia. Influence of Pt-Al Coating on Hot Corrosion Resistance Behaviors of a Ni-Based Single-Crystal Superalloy[J]. 金属学报, 2021, 57(6): 780-790.
[3] LIU Guanxi, HUANG Guanghong, LUO Xuekun, SHEN Zaoyu, HE Limin, LI Jianping, MU Rende. The Influence of Surface Shot Peening on the Isothermal Oxidation Behavior of NiCrAlYSi Coating[J]. 金属学报, 2021, 57(5): 684-692.
[4] Yimin LIAO, Min FENG, Minghui CHEN, Zhe GENG, Yang LIU, Fuhui WANG, Shenglong ZHU. Comparative Study of Hot Corrosion Behavior of theEnamel Based Composite Coatings and the ArcIon Plating NiCrAlY on TiAl Alloy[J]. 金属学报, 2019, 55(2): 229-237.
[5] GAO Bo, WANG Lei, SONG Xiu, LIU Yang, YANG Shuyu, CHIBA Akihiko. Effect of Pre-Oxidation on High Temperature Oxidation and Corrosion Behavior of Co-Al-W-Based Superalloy[J]. 金属学报, 2019, 55(10): 1273-1281.
[6] Chengyang JIANG, Yingfei YANG, Zhengyi ZHANG, Zebin BAO, Shenglong ZHU, Fuhui WANG. Preparation and Enhanced Hot Corrosion Resistance of aZr-Doped PtAl2+(Ni, Pt)Al Dual-Phase Coating[J]. 金属学报, 2018, 54(4): 581-590.
[7] Jin LIU,Yuanxia LAO,Yuan WANG. Effects of Cu on Microstructure and Mechanical Properties of AlN/TiN-Cu Nanocomposite Multilayers[J]. 金属学报, 2017, 53(4): 465-471.
[8] Shilu ZHAO,Zhen ZHANG,Jun ZHANG,Jianming WANG,Zhenggui ZHANG. MICROSTRUCTURE AND WEAR RESISTANCE OF TiAlZrCr/(Ti, Al, Zr, Cr)N GRADIENT FILMS DEPOSITED BY MULTI-ARC ION PLATING[J]. 金属学报, 2016, 52(6): 747-754.
[9] Kechang HAN,Yiqi LIU,Guoqiang LIN,Chuang DONG,Kaiping TAI,Xin JIANG. STUDY ON ATOMIC-SCALE STRENGTHENING MECHANISM OF TRANSITION-METAL NITRIDE MNx (M=Ti, Zr, Hf) FILMS WITHIN WIDE COMPOSITION RANGES[J]. 金属学报, 2016, 52(12): 1601-1609.
[10] LIU Quan, YANG Yingfei, BAO Zebin, ZHU Shenglong, WANG Fuhui. OXIDATION PROPERTY AND FAILURE MECHANISM OF A SINGLE PHASE PtAl2 COATING[J]. 金属学报, 2014, 50(9): 1102-1108.
[11] WU Duoli, JIANG Sumeng, FAN Qixiang, GONG Jun, SUN Chao. ISOTHERMAL OXIDATION BEHAVIOR OF Al-Cr COATING ON Ni-BASED SUPERALLOY[J]. 金属学报, 2014, 50(10): 1170-1178.
[12] JING Yanhong, LIU Enze, ZHENG Zhi, TONG Jian, Ning Likui, HE Ping. HOT CORROSION RESISTANCE OF FILLER ALLOY BCo46[J]. 金属学报, 2014, 50(1): 79-87.
[13] GONG Ziqi, CHEN Ziyong, CHAI Lihua, XIANG Zhilei, NIE Zuoren. STUDY ON CYCLIC OXIDATION RESISTANCE OF  HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM[J]. 金属学报, 2013, 49(11): 1369-1373.
[14] YU Daqian, LU Xuyang, MA Jun, JIANG Sumeng, LIU Shanchuan, GONG Jun, SUN Chao. STUDY OF OXIDATION BEHAVIOR OF THE GRADIENT NiCrAlY COATING AT 1000 AND 1100 ℃[J]. 金属学报, 2012, 48(6): 759-768.
[15] CHANG Zhengkai, XIAO Jinquan, CHEN Yuqiu, LIU Shanchuan, GONG Jun, SUN Chao. STUDY ON DEPOSITION OF MAGNETIC FILMS USING ARC ION PLATING[J]. 金属学报, 2012, 48(5): 547-554.
No Suggested Reading articles found!