Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (3): 371-377    DOI: 10.11900/0412.1961.2014.00549
Current Issue | Archive | Adv Search |
EFFECT OF Mo CONTENT ON THE MICROSTRUC-TURE AND PROPERTIES OF CrMoN COMPOSITE COATINGS
QI Dongli, LEI Hao, FAN Di, PEI Zhiliang, GONG Jun(), SUN Chao
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

QI Dongli, LEI Hao, FAN Di, PEI Zhiliang, GONG Jun, SUN Chao. EFFECT OF Mo CONTENT ON THE MICROSTRUC-TURE AND PROPERTIES OF CrMoN COMPOSITE COATINGS. Acta Metall Sin, 2015, 51(3): 371-377.

Download:  HTML  PDF(4694KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ceramic coatings are usually used as protective coatings to improve performance and durability of tools and components now. Compared with conventional TiN based hard coating, CrN based coating like Cr-X-N (X=Ti, Al, Si, C, B, Ta, Nb, Ni) is a more interesting choice because of low friction coefficient, superior oxidation resistance and excellent corrosion resistance under severe environment conditions. The CrMoN is among these coatings and attractive since self-lubricating phase MoO3 may be formed in tribological process. However the effect of Mo content on structure and tribological properties of CrMoN coatings is not still clear. In the present study, CrMoN composite coatings with different Mo content were deposited on M2 high speed steel (HSS) substrates by DC reactive magnetron sputtering. The effect of Mo content on the microstructure and properties was investigated systematically, including the chemical composition, phase structure, chemical valence, cross-section morphologies, microhardness and tribological properties. The results showed that the phase transformation of the as-deposited coatings occurred with the increase of Mo content. The phase structure changed to (Cr, Mo)N substitutional solid solution based on CrN-type firstly, and then to mixed phase with g-Mo2N as main phase, and a small amount of elemental bcc-Mo phase appeared when the Mo content is 69.3%. The microhardness of the CrMoN composite coatings always increased until the highest hardness when the Mo content reached to 45.4%, and then decreased; a relatively low friction coefficient was obtained compared with that of the CrN coating when more than 45.4%Mo content was doped. The reason is that the more MoO3 lubricant phase could be formed in tribological process.

Key words:  CrMoN composite coating      magnetron sputtering      microhardness      friction coefficient     
ZTFLH:  TG172  
Fund: Supported by National Basic Research Program of China (No.2012CB625100), National Natural Science Foundation of China (No.51171197) and Natural Science Foundation of Liaoning Province ( Nos.2013020132 and 2013010442-401)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00549     OR     https://www.ams.org.cn/EN/Y2015/V51/I3/371

Fig.1  Schematic of magnetron sputtering apparatus
Sample
No.
Process Gas flow rate / (mL·min-1) Cr target current / A Mo target current / A Substrate
bias / V
Time
min
Ar N2
Substrate cleaning 60 - 0.4 - -200 5
Cr adhesion layer 60 - 0.4 - -100 5
1 CrN 30 30 0.4 - -100 60
2 CrMoN 30 30 0.4 0.2 -100 120
3 CrMoN 30 30 0.4 0.3 -100 120
4 CrMoN 30 30 0.4 0.4 -100 120
5 CrMoN 30 30 0.3 0.4 -100 120
6 CrMoN 30 30 0.2 0.4 -100 120
Table 1  Deposition conditions for CrMoN composite coatings
Sample
No.
Atomic fraction / % Thickness
μm
Deposition rate (nm·s-1) Grain size nm Hardness
HV
Cr Mo
1 100.0 0.0 1.58 0.44 19.0 1802
2 79.6 20.4 1.66 0.23 16.3 1910
3 68.7 31.3 1.70 0.24 15.2 1993
4 61.6 45.4 1.80 0.25 12.5 2714
5 45.8 54.2 1.57 0.22 14.5 2235
6 30.7 69.3 1.52 0.20 18.0 2206
Table 2  Atomic fraction of the metal elements, thickness, deposition rate, grain size and hardness of CrMoN composite coatings with different Mo content
Fig.2  XRD spectra of CrMoN composite coatings with different Mo content
Fig.3  Influence of Mo content on the lattice constant of fcc structure
Fig.4  Cross-section SEM images of CrMoN composite coatings of samples No.1 (a), No.2 (b), No.3 (c), No.4 (d), No.5 (e) and No.6 (f)
Fig.5  XPS spectra of CrMoN composite coatings of samples No.2 and No.6
Fig.6  Friction coefficient and wear rate of CrMoN composite coatings with different Mo content
Fig.7  Wear track depth profiles of CrMoN composite coatings with different Mo content
Fig.8  Surface SEM images of wear tracks of CrMoN composite coatings of samples No.1 (a), No.2 (b), No.3 (c), No.4 (d), No.5 (e) and No.6 (f)
[1] Navinšek B, Panjan P, Milošev I. Surf Coat Technol, 1997; 97: 182
[2] Barshilia H C, Selvakumar N, Deepthi B, Rajam K S. Surf Coat Technol, 2006; 201: 2193
[3] Budna K P, Neidhardt J, Mayrhofer P H, Mitterer C. Vacuum, 2008; 82: 771
[4] Choi E Y, Kang M C, Kwon D H, Dong Woo, Kim K H. Mater Processing Technol, 2007; 188: 566
[5] Homhuan P, Chaiyakun S, Thonggoom R, Panich N, Tungasmita S. Mater Trans, 2010; 51: 1651
[6] Benkahoul M, Robin P, Gujrathi S C, Martinu L, Klemberg-Sapieha J E. Surf Coat Technol, 2008; 202: 3975
[7] Fuentes G G, de Cerio M J D, Garcia J A, Martinez R, Bueno R, Rodriguez R J, Rico M, Montala F, Qin Y. Surf Coat Technol, 2008; 203: 670
[8] Kim K H, Choi E Y, Hong S G, Park B G, Yoon J H, Yong J H. Surf Coat Technol, 2006; 201: 4068
[9] Lyo I W, Ahn H S, Lim D S. Surf Coat Technol, 2003; 163: 413
[10] Suszko T, Gulbinski W, Jagielski J. Surf Coat Technol, 2005; 194: 319
[11] Tian S F. PhD Dissertation, Harbin Institute of Technology, 2013
(田首夫. 哈尔滨工业大学博士学位论文, 2013)
[12] Jacob K T, Raj S, Rannesh L. Int J Mater Res, 2007; 98: 776
[13] Fang Q F, Yang J F, Yuan Z G, Zhang G G, Wang X P. Mater Res Bull, 2009; 44: 1948
[14] Bertóti I. Surf Coat Technol, 2002; 151-152: 194
[15] Sanjinés R, Wiemer C, Almeida J, Lévy F. Thin Solid Films, 1996; 290-291: 334
[16] de Vries J E, Yao H C, Baird R J, Gandhi H S. J Catal, 1983; 84: 8
[17] Liu C H, Du X S, Wang D Z, Huang N K, Yang B. J Funct Mater, 2007; 38: 176
(刘春海, 杜晓松, 汪德志, 黄宁康, 杨 斌. 功能材料, 2007; 38: 176)
[18] Wan X S, Zhao S S, Yang Y, Gong J, Sun C. Surf Coat Technol, 2010; 204: 1800
[19] Pande C S, Masumura R A, Armstrong R W. Nanostruct Mater, 1993; 2: 323
[20] Wang C C, Peng C Q, Feng Y, Wei X F. Chin J Nonferrous Met, 2012; 22: 1945
(王常川, 彭超群, 冯 艳, 韦小凤. 中国有色金属学报, 2012; 22: 1945)
[21] Blau P J. Wear, 1982; 81: 187
[1] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[2] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[3] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[4] LIU Ming, YAN Fuwen, GAO Chenghui. Effects of Progressive Normal Force on Microscratch Responses of Metallic Materials[J]. 金属学报, 2021, 57(10): 1333-1342.
[5] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[6] LIU Yanmei, WANG Tiegang, GUO Yuyao, KE Peiling, MENG Deqiang, ZHANG Jifu. Design, Preparation and Properties of Ti-B-N Nanocomposite Coatings[J]. 金属学报, 2020, 56(11): 1521-1529.
[7] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[8] Wentao LI,Zhenyu WANG,Dong ZHANG,Jianguo PAN,Peiling KE,Aiying WANG. Preparation of Ti2AlC Coating by the Combination of a Hybrid Cathode Arc/Magnetron Sputtering with Post-Annealing[J]. 金属学报, 2019, 55(5): 647-656.
[9] Shasha YANG,Feng YANG,Minghui CHEN,Yunsong NIU,Shenglong ZHU,Fuhui WANG. Effect of Nitrogen Doping on Microstructure and Wear Resistance of Tantalum Coatings Deposited by Direct Current Magnetron Sputtering[J]. 金属学报, 2019, 55(3): 308-316.
[10] Houpu WU,Xiubo TIAN,Xinyu ZHANG,Chunzhi GONG. Discharge Characteristics of Novel Dual-Pulse HiPIMS and Deposition of CrN Films with High Deposition Rate[J]. 金属学报, 2019, 55(3): 299-307.
[11] Huiying SHI, Chao YANG, Bailing JIANG, Bei HUANG, Di WANG. Influences of Target Peak Current Density on the Microstructure and Mechanical Properties of TiN Films Deposited by Dual Pulsed Power Magnetron Sputtering[J]. 金属学报, 2018, 54(6): 927-934.
[12] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[13] Zhanxing CHEN,Hongsheng DING,Shiqiu LIU,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy[J]. 金属学报, 2017, 53(5): 583-591.
[14] Chenliang WU,Song ZHANG,Chunhua ZHANG,Meng GUAN,Junzhe TAN. PHASE EVOLUTION OF FeCoCrAlCuNiMox COATINGS BY LASER HIGH-ENTROPY ALLOYING ON STAINLESS STEELS[J]. 金属学报, 2016, 52(7): 797-803.
[15] Xudong SUI,Guojian LI,Qiang WANG,Xuesi QIN,Xiangkui ZHOU,Kai WANG,Lijian ZUO. PREPARATION OF Ti1-xAlxN COATING IN CUTTING TITANIUM ALLOY AND ITS CUTTING PERFORMANCE[J]. 金属学报, 2016, 52(6): 741-746.
No Suggested Reading articles found!