Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (11): 1416-1424    DOI: 10.11900/0412.1961.2015.00147
Orginal Article Current Issue | Archive | Adv Search |
RESEARCH ON THE PREPARATION AND PERFOR-MANCE OF TUNGSTEN-ALUMINUM TRANSMIS-SION TARGET FOR MICRO-COMPUTED TOMOGRAPHY BY MAGNETRONSPUTTERING
Yutian MA,Junbiao LIU(),Rongling HUO,Li HAN,Geng NIU
Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190
Cite this article: 

Yutian MA,Junbiao LIU,Rongling HUO,Li HAN,Geng NIU. RESEARCH ON THE PREPARATION AND PERFOR-MANCE OF TUNGSTEN-ALUMINUM TRANSMIS-SION TARGET FOR MICRO-COMPUTED TOMOGRAPHY BY MAGNETRONSPUTTERING. Acta Metall Sin, 2015, 51(11): 1416-1424.

Download:  HTML  PDF(873KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Micro-computed tomography is a new three-dimension high-resolution imaging device, which due to its X-ray brightness generated by a compact electron impact X-ray source. To achieve higher X-ray brightness, the size of the X-ray source should be as small as possible. However, the X-ray brightness is fundamentally limited by the maximum possible heat dissipation of the X-ray target. As an electron beam strikes a metallic target, the power density of target is increased with the decreasing of the spot size of electron beam, which results in the decrease of the X-ray brightness by significant temperature elevation of the target surface. A practical solution for these requirements is the use of a multi-film target consisting of a thin-film target on a thicker substrate film. The substrate should be composed of a light material with high thermal conductivity to prevent absorption of the signal X-rays and to elevate the target temperature. In such a multi-film target, several factors as following must be considered to choose the materials and thicknesses of the multiple films: the highest power density of the target can sustain without performance degradations or damage, and the efficiency of the X-ray generation in the target material including any self absorption effects. The present work designed a basic structure of tungsten-aluminum transmission target, according to the theoretical model of the end-window transmission target for Micro-CT. The thicknesses of tungsten target surface and aluminum substrate are determined by the Geant4 simulation results and the Müller calculation model of temperature rise, respectively. According to the structure parameter of tungsten-aluminum transmission target of YXLON, the tungsten film with the thickness of 2, 5 and 8 μm are prepared on the aluminum substrate by the magnetron sputtering method. The density and evenness of tungsten film both are well by the SEM analysis. The performance of three kinds of target with different thicknesses is carried out on the X-ray tube of YXLON. The results show that the optimal thickness of tungsten film is 5 μm, and the X-ray emitting efficiency of tungsten-aluminum transmission target is the biggest, which the corresponding production power of X-ray is the lowest. On this basis, the contrast experiments of X-ray emitting efficiency and X-ray imaging effect are carried out between the tungsten-aluminum transmission target of homemade and that of YXLON. The experimental results indicate that the X-ray emitting efficiency, the corresponding X-ray production power and the X-ray imaging effect of homemade target all are superior to that of YXLON, which could be satisfied the application requirements of high quality target for Micro-CT.

Key words:  micro-computed tomography      magnetron sputtering      transmission target      tungsten film     
Fund: Supported by National Key Scientific Instrument and Equipment Development Projects (No.2011YQ030112)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00147     OR     https://www.ams.org.cn/EN/Y2015/V51/I11/1416

Fig.1  Theoretical model of the tungsten-aluminum end-window transmission target (h1—thickness of tungsten target surface, h2—thickness of aluminum substrate, x—average depth from thin layer to target surface, S—area of detector window, θ—angle between characteristic X-ray and target surface)
Fig.2  Change of optimal target thickness with acceleration voltage (a) and X-ray yield of tungsten film at 70 kV (b)
Fig.3  Low (a, c) and high (b, d) magnified SEM images of tungsten films prepared by the magnetron sputtering method (a, b) and YXLON (c, d)
Fig.4  X-ray emitting efficiency (a, c, e) and its production power dependence (b, d, f) of W-Al transmission target of YXLON and W-Al transmission target with three thicknesses under different acceleration voltages and models

(a, b) nano-focus model (c, d) micro-focus model (e, f) high-power model

Fig.5  X-ray emitting efficiency (a, c, e) and its production power dependence (b, d, f) of W-Al transmission target of YXLON and W-Al transmission target with thickness of 5 μm under different tube currents and models

(a, b) nano-focus model (c, d) micro-focus model (e, f) high-power model

Fig.6  X-ray images used W-Al transmission target with thickness of 5 μm (a, c) and W-Al transmission target of YXLON (b, d) under acceleration voltage of 50 kV and emission current of 53 μA (a, b) and acceleration voltage of 60 kV and emission current of 153 μA (c, d)
[1] Rubin C, Turner A S, Müller R, Mittra E, McLeod K, Lin W, Qin Y.J Bone Miner Res, 2002; 17: 349
[2] Moreno-Atanasio R, Richard A W. Particuology, 2010; 8: 81
[3] Gui J B, Hu Z L, Zhou Y, Zheng H R. CT Theory Appl, 2009; 18:106 (桂建保, 胡战利, 周颖, 郑海荣. CT理论与应用研究, 2009; 18:106)
[4] Yan J, Jiang S E, Su M, Wu S C, Lin Z W. Acta Phys Sin, 2012; 61: 068703 (晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. 物理学报, 2012; 61: 068703)
[5] Yan J, Zheng J H, Chen L, Lin Z W, Jiang S E. Acta Phys Sin, 2012; 61: 148701 (晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. 物理学报, 2012; 61: 148701)
[6] Cnudde V, Boone M N. Earth-Sci Rev, 2013; 123: 1
[7] Wang Y D, Peng G Y, Tong Y J, Zhou G Z, Ren Y Q, Yang Q, Xiao T Q. Acta Phys Sin, 2012; 61: 054205 (王玉丹, 彭冠云, 佟亚军, 周光照, 任玉琦, 杨群, 肖体乔. 物理学报, 2012; 61: 054205)
[8] Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q. Acta Phys Sin, 2014; 63: 104202 (戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔. 物理学报, 2014; 63: 104202)
[9] Batemna J E, Moss G R, Roekett P, Webb S. Nucl Instru Meth, 1988; 273A: 767
[10] Pinies B R. translated by He L. Fine-Focus X-ray Tube and its Application in Structural Analysis. Beijing: Science Press, 1963: 40 (Pinies B R著, 何犖译. 细聚焦X射线管及其在结构分析中的应用. 北京: 科学出版社,1963: 40)
[11] Ihsan A, Heo S H, Cho S O. Nucl Instru Meth, 2009; 267B: 3566
[12] Wu Y, Wang G Y, Mu Q, Zhao Q. Chin Phys, 2014; 23B: 013401
[13] Mei C X, Zhang X A, Zhao Y T, Zhou X M, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Wang Y Y, Liang C H, Li Y Z, Xiao G Q. Chin Phys, 2013; 22B: 103403
[14] Lei Y H, Liu X, Guo J C, Zhao Z G, Niu H B. Chin Phys, 2011; 20B: 042901
[15] Wang Y F, Que J M, Cao D Q, Sun C L, Zhao W, Wei C F, Shi R J, Wei L. Chin Phys, 2013; 37C: 078202
[16] Wang Y, Li Q, Jiang X G. Chin Phys, 2012; 36C: 861
[17] Dai Q S, Qi Y J. Acta Phys Sin, 2010; 59: 357 (代秋声, 漆玉金. 物理学报, 2010; 59: 357)
[18] Yoshioka A, Yamaguchi Y, Tamura K, Shimizu R. Surf Interface Anal, 2005; 37: 356
[19] Yoshioka A, Yamaguchi Y, Tamura K, Shimizu R. Surf Interface Anal, 2004; 36: 1417
[20] Gao L N, Chen W G. Chin J Rare Met, 2008; 32: 605 (高丽娜, 陈文革. 稀有金属, 2008; 32: 605)
[21] Gao L N. Electron Des Eng, 2012; 20(19): 168 (高丽娜. 电子设计工程, 2012; 20(19): 168)
[22] Lai D G, Zhang Y M, Li J X, Su Z F, Zhang Y Y, Ren S Q, Yang L, Yang S. High Power Laser Part Beams, 2012; 25: 1396 (来定国, 张永民, 李进玺, 苏兆峰, 张玉英, 任书庆, 杨莉, 杨实. 强激光与粒子束, 2012; 25: 1396)
[23] Park C K, Kim J P, Yun S J, Lee S H, Park J S. Thin Solid Films, 2007; 516: 304
[24] Jenneson P M, Luggar R D, Morton E. J Appl Phys, 2004; 96: 2889
[25] Senda S, Sakai Y, Mizuta Y, Kita S, Okuyama F. Appl Phys Lett, 2004; 85: 5679
[26] Ma Y H. The Characteristics of X-ray, X-ray Physics and Protection. Beijing: People's Medical Publishing House, 1996: 27 (马延洪. 特征X线、X线物理与防护. 北京: 人民卫生出版社, 1996: 27)
[27] Teterev U G, Belov A G. Atomic Energy, 2001; 91: 745
[28] Yoshioka A, Yamaguchi Y, Tamura K, Shimizu R. Surf Interface Anal, 2005; 37: 356
[29] Cao Q Q, Jin C, Ren X, Sha J T. Chin J Radiol Health, 2013; 22(1): 15 (曹琴琴, 金川, 任翔, 沙京田. 中国辐射卫生, 2013; 22(1): 15)
[30] Yang Q, Ge L Q, Gu Y, Hua Y T, Luo Y Y. Spectrosc Spectral Anal, 2013; 33: 1130 (杨强, 葛良全, 谷懿, 花永涛, 罗耀耀. 光谱学与光谱分析, 2013; 33: 1130)
[1] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[2] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[3] LIU Yanmei, WANG Tiegang, GUO Yuyao, KE Peiling, MENG Deqiang, ZHANG Jifu. Design, Preparation and Properties of Ti-B-N Nanocomposite Coatings[J]. 金属学报, 2020, 56(11): 1521-1529.
[4] Wentao LI,Zhenyu WANG,Dong ZHANG,Jianguo PAN,Peiling KE,Aiying WANG. Preparation of Ti2AlC Coating by the Combination of a Hybrid Cathode Arc/Magnetron Sputtering with Post-Annealing[J]. 金属学报, 2019, 55(5): 647-656.
[5] Houpu WU,Xiubo TIAN,Xinyu ZHANG,Chunzhi GONG. Discharge Characteristics of Novel Dual-Pulse HiPIMS and Deposition of CrN Films with High Deposition Rate[J]. 金属学报, 2019, 55(3): 299-307.
[6] Shasha YANG,Feng YANG,Minghui CHEN,Yunsong NIU,Shenglong ZHU,Fuhui WANG. Effect of Nitrogen Doping on Microstructure and Wear Resistance of Tantalum Coatings Deposited by Direct Current Magnetron Sputtering[J]. 金属学报, 2019, 55(3): 308-316.
[7] Huiying SHI, Chao YANG, Bailing JIANG, Bei HUANG, Di WANG. Influences of Target Peak Current Density on the Microstructure and Mechanical Properties of TiN Films Deposited by Dual Pulsed Power Magnetron Sputtering[J]. 金属学报, 2018, 54(6): 927-934.
[8] Xudong SUI,Guojian LI,Qiang WANG,Xuesi QIN,Xiangkui ZHOU,Kai WANG,Lijian ZUO. PREPARATION OF Ti1-xAlxN COATING IN CUTTING TITANIUM ALLOY AND ITS CUTTING PERFORMANCE[J]. 金属学报, 2016, 52(6): 741-746.
[9] Baiyang LOU,Yuxing WANG. EFFECTS OF Mo CONTENT ON THE MICRO-STRUCTURE AND TRIBOLOGICAL PROPERTIES OF CrMoAlN FILMS[J]. 金属学报, 2016, 52(6): 727-733.
[10] QI Dongli, LEI Hao, FAN Di, PEI Zhiliang, GONG Jun, SUN Chao. EFFECT OF Mo CONTENT ON THE MICROSTRUC-TURE AND PROPERTIES OF CrMoN COMPOSITE COATINGS[J]. 金属学报, 2015, 51(3): 371-377.
[11] Chao YANG,Bailing JIANG,Lin FENG,Juan HAO. EFFECT OF DISCHARGE CHARACTERISTICS OF TARGET ON IONIZATION AND DEPOSITION OF DEPOSITED PARTICLES[J]. 金属学报, 2015, 51(12): 1523-1530.
[12] Wenfang CUI,Dong CAO,Gaowu QIN. MICROSTRUCTURE AND WEAR RESISTANCE OF Ti/TiN MULTILAYER FILMS DEPOSITED BY MAGNETRON SPUTTERING[J]. 金属学报, 2015, 51(12): 1531-1537.
[13] Yutian MA,Junbiao LIU,Rongling HUO,Li HAN,Geng NIU. RESEARCH ON THE PREPARATION AND PERFOR-MANCE OF TUNGSTEN-ALUMINUM TRANSMIS-SION TARGET FOR MICRO-COMPUTED TOMOGRAPHY BY MAGNETRONSPUTTERING[J]. 金属学报, 2015, 51(11): 1416-1424.
[14] WANG Zhenyu, XU Sheng, ZHANG Dong, LIU Xincai, KE Peiling, WANG Aiying. INFLUENCE OF N2 FLOW RATE ON STRUCTURES AND MECHANICAL PROPERTIES OF TiSiN COATINGS PREPARED BY HIPIMS METHOD[J]. 金属学报, 2014, 50(5): 540-546.
[15] SHANG Hailong, LIU Wenqing, DONG Yujun, ZHANG Anming, MA Bingyang, LI Geyang. 3D ATOM PROBE CHARACTERIZATION OF MICRO-STRUCTURE OF TiBx/Al SUPERSATURATED SOLID SOLUTE COMPOSITE FILMS[J]. 金属学报, 2014, 50(4): 395-399.
No Suggested Reading articles found!