Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (6): 727-733    DOI: 10.11900/0412.1961.2015.00493
Orginal Article Current Issue | Archive | Adv Search |
EFFECTS OF Mo CONTENT ON THE MICRO-STRUCTURE AND TRIBOLOGICAL PROPERTIES OF CrMoAlN FILMS
Baiyang LOU(),Yuxing WANG
Faculty of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Cite this article: 

Baiyang LOU,Yuxing WANG. EFFECTS OF Mo CONTENT ON THE MICRO-STRUCTURE AND TRIBOLOGICAL PROPERTIES OF CrMoAlN FILMS. Acta Metall Sin, 2016, 52(6): 727-733.

Download:  HTML  PDF(857KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent decades, CrAlN coatings have been widely used for cutting tools due to their high hardness, good wear resistance, especially excellent thermal stability and oxidation resistance. However, the rapid development in high speeds and dry cutting applications demands further improvement in hardness and wear properties of CrAlN coatings. Mo nitrides coatings are commonly used as protective surface layers against wear and corrosion. The combination of CrAlN and Mo may lead to the development of new composite coatings with superior wear properties. In this study, the CrMoAlN multilayer coatings with different Mo contents were deposited on M2 tool steel and silicon wafers substrates by closed-field unbalanced magnetron sputtering ion plating (CFUMSIP) technique in a gas mixture of Ar+N2. The chemical composition, surface and cross sectional morphologies, microstructure, mechanical and tribological properties of coatings were studied by EDS, SEM, XRD, XPS, nano-indentation and pin-on-disk tribometer, respectively. The results indicate that the CrMoAlN coatings exhibit fcc structure. Mo atoms substitute Cr and/or Al atoms in CrAlN lattice forming the solid solution CrMoAlN coatings. The surface and cross-sectional morphologies of the CrMoAlN coatings show that the grain size and the column width decrease with the increasing of Mo content. Nano-indentation result reveals a promoted hardness and elastic modulus of the CrMoAlN coatings with enhanced Mo content from 0 to 19.47% (atomic fraction) due to the solid solution strengthening and grain size diminishment. A maximum hardness and elastic modulus of the coatings are found to be 29.70 GPa and 427.53 GPa when the Mo content reached to 19.47%. The average friction coefficient and wear rate were observed to decrease with the increase of Mo content and the lowest values were 0.271 and 1.2×10-16 m3/(Nm), respectively, at 19.47%Mo.

Key words:  CrMoAlN nano-multilayer coating      magnetron sputtering      microstructure      tribological property     
Received:  21 September 2015     
Fund: Supported by Natural Science Foundation of Zhejiang Province (No.Y15E050060)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00493     OR     https://www.ams.org.cn/EN/Y2016/V52/I6/727

Fig.1  XRD spectra of CrMoAlN coatings with different Mo contents
Fig.2  Surface SEM images of CrAlN (a), CrAlN-2Mo (b), CrAlN-4Mo (c) and CrAlN-6Mo (d) coatings
Coating Mo target current
A
Atomic fraction / % Thickness
μm
Deposition rate
nms-1
Cr Mo Al N
CrAlN 0 44.97 0 5.16 49.87 2.121 0.29
CrAlN-2Mo 2 39.93 7.94 5.59 46.54 2.467 0.34
CrAlN-4Mo 4 35.12 16.05 4.28 44.55 2.629 0.37
CrAlN-6Mo 6 32.63 19.47 3.25 44.65 2.742 0.38
Table 1  Atomic fraction of the metal elements, thickness and deposition rate of CrMoAlN coatings with different Mo contents
Fig.3  Cross sectional SEM images of CrAlN (a), CrAlN-2Mo (b), CrAlN-4Mo (c) and CrAlN-6Mo (d) coatings
Fig.4  XPS results of CrMoAlN coatings

(a) Cr2p (b) Mo3d (c) Al2p (d) N1s

Fig.5  Hardness-displacement (a) and Young's modulus-displacement (b) curves of CrMoAlN coatings with different Mo contents
Fig.6  Curves of friction coefficient of CrMoAlN coatings with different Mo contents at room temperature
Coating H / GPa E / GPa H3/E2 Friction
coefficient
Wear rate
10-16 m3N-1m-1
CrAlN 21.71 318.72 0.101 0.307 2.0
CrAlN-2Mo 23.14 340.13 0.107 0.298 1.5
CrAlN-4Mo 25.72 380.65 0.120 0.291 1.3
CrAlN-6Mo 29.70 427.53 0.143 0.271 1.2
Table 2  Nanohardness H, Young's modulus E, H3/E2, friction coefficient and wear rate of CrMoAlN coatings with different Mo contents
Fig.7  SEM images for the wear tracks of CrAlN (a), CrAlN-2Mo (b), CrAlN-4Mo (c) and CrAlN-6Mo (d) coatings
[1] Conde A, Navas C, Cristobal A B, Housden J, Damborenea J.Surf Coat Technol, 2006; 201: 2690
[2] Barshilia H C, Selvakumar N, Deepthi B, Rajam K S.Surf Coat Technol, 2006; 201: 2193
[3] Cheng Y H, Browne T, Heckerman B.Wear, 2011; 271: 775
[4] Lin J L, Zhang N Y, Sproul W D, Moore J J.Surf Coat Technol, 2012; 206: 3283
[5] Lorenzo-Martin C, Ajayi O, Erdemir A, Fenske G R, Wei R.Wear, 2013; 302: 963
[6] Mo J L, Zhu M H, Leyland A, Matthews A.Surf Coat Technol, 2013; 215: 170
[7] Romero J, Gómez M A, Esteve J.Thin Solid Films, 2006; 515: 113
[8] Wo P C, Munroe P, Jiang Z T, Zhou Z F, Li K Y, Xie Z H.Mater Sci Eng, 2014; A596: 264
[9] Lin J L, Wang B, Ou Y X.Surf Coat Technol, 2013; 216: 251
[10] Rapoport L, Moshkovich A, Perfilyev V.Surf Coat Technol, 2014; 238: 207
[11] Banakh O, Schmid P E, Sanjines R, Levy F.Surf Coat Technol, 2003; 163: 57
[12] Wang L P, Zhang G A, Wood R J K, Wang S C, Xue Q J.Surf Coat Technol, 2010; 204: 3517
[13] Li T P, Zhou Y C, Li M S.Surf Coat Technol, 2008; 202: 1985
[14] Tam P L, Zhou Z F, Shum P W.Thin Solid Films, 2008; 516: 5725
[15] Yang Q, Zhao L R, Cai F, Yang S, Teer D G.Surf Coat Technol, 2008; 202: 3886
[16] Yang S C, Li X Y, Cooke K E.Appl Surf Sci, 2012; 258: 2062
[17] Qi D L, Lei H, Fan D.Acta Metall Sin, 2015; 51: 371
[17] (齐东丽, 雷浩, 范迪. 金属学报, 2015; 51: 371)
[18] Yang Q, Zhao L R, Patnaik P C, Zeng X T.Wear, 2006; 261: 119
[19] Yang K, Xian G, Zhao H B, Fan H Y, Wang J, Wang H, Du H.Int J Refract Met Hard Mater, 2015; 52: 261
[20] Qi D L, Lei H, Wang T G, Pei Z L, Gong J, Sun C.J Mater Sci Technol, 2015; 31: 55
[21] Chang S Y, Kim K H, Kwon S H, Park I W.J Korean Phys Soc, 2009; 54: 1237
[22] Qi Z B, Wu Z T, Wang Z C.Surf Coat Technol, 2014; 259: 146
[23] Cheng W L, Zhou Z F, Shum P W.Surf Coat Technol, 2013; 229: 84
[24] Kim K H, Choi E Y, Hong S G, Park B G, Yoon J H, Yong J H.Surf Coat Technol, 2006; 201: 4068
[25] Musil J, Kunc F, Zeman H, Polakova H.Surf Coat Technol, 2002; 154: 304
[26] Xu J H, Ju H B, Yu L H.Acta Metall Sin, 2012; 48: 1132
[26] (许俊华, 鞠洪博, 喻利花. 金属学报, 2012; 48: 1132)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!