Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (8): 915-923    DOI: 10.11900/0412.1961.2015.00628
Orginal Article Current Issue | Archive | Adv Search |
INFLUENCE OF DIFFERENT SURFACE MODIFICA-TION TREATMENTS ON SURFACE INTEGRITY AND FATIGUE PERFORMANCE OF TC4 TITANIUM ALLOY
Yukui GAO()
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
Cite this article: 

Yukui GAO. INFLUENCE OF DIFFERENT SURFACE MODIFICA-TION TREATMENTS ON SURFACE INTEGRITY AND FATIGUE PERFORMANCE OF TC4 TITANIUM ALLOY. Acta Metall Sin, 2016, 52(8): 915-923.

Download:  HTML  PDF(1313KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TC4 titanium alloy is usually used to manufacture engine blades, blings or blisks and fatigue is the main failure of these components due to its high strength, good corrosion resistance and light weight. In engineering applications, three typical surface modification processes such as shot peening (SP), laser shock peening (LSP) and low plasticity burnishing (LPB) were employed to improve fatigue performance. In this work, SP, LSP and LSB were taken to enhance surface layer of TC4 titanium alloy. The surface integrity of specimens including surface roughness, microhardness, residual stresses and microstructure was investigated to obtain the effects of modification on surface layer by different methods. The rotating-bending fatigue performance was tested at room temperature and fatigue fracture surfaces were analyzed by SEM. Fatigue life was compared at the same stress 760 MPa with the reference machinced specimen. Fatigue strength was determined by stair method for 1×107 cyc. The results show that both the rotating-bending fatigue life and fatigue strength of TC4 titanium alloy are increased by these surface modification processes. The fatigue life prolonging factor (FLPF) for SPed specimens is 20.4, and FLPF for LSPed specimens and LPBed specimens is 89.6 and 99, respectively. Meanwhile, fatigue strength improvement percentage (FSIP) for SPed, LSPed and LPBed specimens is 36.3%, 37.8% and 38.8%, respectively. Moreover, the fatigue cracks initiate beneath surface enhanced layer for surface-modified specimens, while they are located at surfaces for un-surface-enhanced ones. Based on dislocation theory, the subsurface cracks initiation resistance and fatigue strength for surface-enhanced specimens were analysied. Finally, surface modification mechanisms were discussed and some quantitative analysis methods on surface modification effects were proposed. For surface-enhanced smooth specimens, the FSIP limit is 40% based on proposed analysis model and it is verified in this work by different surface layer enhancement processes (36.3% for SPed specimens, 37.8% for LSPed and 38.8% for LPBed specimens are near to 40%). Fatigue total life including initiation and propagation is a complex problem, and therefore it is difficult to give accurate life prediction and analysis, especially for small crack growth, although some invesitigations on total fatigue life can be roughly estimated based on Basquin relation for stress fatigue life or Coffin and Marson eqution for strain fatigue life which have not any physical meaning or any mechanism.

Key words:  TC4 titanium alloy      shot peening      laser shock peening      low plasticity burnishing      surface integrity      fatigue     
Received:  07 December 2015     
Fund: Supported by National Natural Science Foundation of China (No.11372226), Fundamental Research Funds for the Central Universities of China (No.13302380043), Aviation Science Foundation of China (No.2014ZE38008) and Program of Talent Project of Tongji University (No.1330219133)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00628     OR     https://www.ams.org.cn/EN/Y2016/V52/I8/915

Fig.1  Size of rotating-bending specimen (unit: mm)
Fig.2  OM image of TC4 titanium alloy
Fig.3  SEM images show surface morphologies of specimens machined (a), and different low plasticity burnishing (LPB) numbers Nt=3 (b), Nt=5 (c), Nt=7 (d) and Nt=9 (e)
Fig.4  Microhardness distributions in surface modified layer of TC4 titanium alloy treated by machining and different surface modification processes (SP—shot peening, LSP—laser shock peening)
Fig.5  Residual stress distributions in surface modified layer of TC4 titanium alloy treated by machining and different surface modification processes
Specimen Fatigue life range / cyc Mean life / cyc FLPF
Machined 2.614×104~6.182×104 4.582×104 0 (referenced specimen)
SP 9.137×105~1.024×106 9.804×105 20.4
LSP 4.001×106~5.220×106 4.150×106 89.6
LPB (Nt=7) 3.227×106~8.014×106 4.582×106 99.0
Table 1  Rotating-bending fatigue life of TC4 titanium alloy specimens under 760 MPa stress
Specimen Fatigue strength / MPa FSIP
Machined 490 0 (referenced specimen)
SP 668 36.3%
LSP 675 37.8%
LPB (Nt=7) 680 38.8%
Table 2  Rotating-bending fatigue strength of TC4 titanium alloy specimens
Fig.6  Low (a, c, e, g) and locally high (b, d, f, h) magnified SEM images show fatigue fractures of rotating-bending TC4 titanium alloy specimans treated by machining (a, b), LSP (c, d), SP (e, f) and LPB (g, h)
Fig.7  Schematics of fatigue fracture's generation (σ—normal stress, τ—shear stress)

(a) in the interior (b) at surface layer

[1] Joshi V A.Titanium Alloys—An Atlas of Structures and Fracture Fearures .New York: CRC Press, Taylor & Francis Group, 2006: 1
[2] Gao Y K.Surface Integrity Theory and Its Application Beijing: Chemical Industry Press, 2014: 1
[2] (高玉魁. 表面完整性理论与应用. 北京: 化学工业出版社, 2014: 1)
[3] Davim J P.Surface Integrity in Machining London: Springer, 2010: 1
[4] Gao Y K, Li X B, Yang Q X, Yao M.Mater Lett, 2007; 61: 466
[5] Gao Y K, Yin Y F, Li X B.Met Heat Treat, 2002; 27(8): 30
[5] (高玉魁, 殷源发, 李向斌. 金属热处理, 2002; 27(8): 30)
[6] Gao Y K, Liu T Q, Yin Y F . Li X B.J Aeronaut Mater, 2002; 22(2): 21
[6] (高玉魁, 刘天琦, 殷源发, 李向斌. 航空材料学报, 2002; 22(2): 21)
[7] Gao Y K.Chin J Nonferrous Met, 2004; 14: 60
[7] (高玉魁. 中国有色金属学报, 2004; 14: 60)
[8] Gao Y K, Yao M, Li J K.Metall Mater Trans, 2002; 33A: 1778
[9] Gao Y K, Wu X R.Acta Mater, 2011; 59: 3744
[10] Zhang X C, Zhang Y K, Lu J Z, Xuan F Z, Wang Z D, Tu S T.Mater Sci Eng, 2010; A527: 3411
[11] Gao Y K.Mater Sci Eng, 2011; A528: 3823
[12] Altenberger I, Nalla R K, Sano Y, Wagner L, Ritchie R O.Int J Fatigue, 2012; 44: 292
[13] Nalla R K, Altenberger U N, Liu G Y, Sxholtes B, Ritchie R O.Mater Sci Eng, 2003; A355: 216
[14] Seemikeri C Y, Brahmankar P K, Mahagaonkar S B.Tribology Int, 2008; 41: 724
[15] Prevey P S, Cammett J T.Int J Fatigue, 2004; 26: 975
[16] Aviles R, Albizuri J, Rodriguez A, Lacalle L N.Int J Fatigue, 2013; 55: 230
[17] Revankar G D, Shetty R, Rao S S, Gaitonde V N.Measurement, 2014; 58: 256
[18] Chen G Q, Jiao Y, Tian T Y, Zhang X H, Li Z Q, Zhou W L.Trans Nonferrous Met Soc China, 2014; 24: 690
[19] Li K, Fu X S, Li R D, Gai P T, Li Z Q, Zhou W L, Chen G Q.Int J Fatigue, 2016; 85: 65
[20] Li K, Fu X S, Li R D, Gai P T, Zhou W L, Li Z Q.Mater Des, 2015; 86: 761
[21] Youtsos A G.Residual Stress and its Effects on Fatigue and Fracture London: Springer, 2006: 1
[22] Schulze V.Modern Mechanical Surface Treatment. Weinheim: Wiley-VCH, 2006: 1
[23] Gao Y K, Jiang C Y.Aeronaut Manuf Technol, 2016; 4: 16
[24] Gao Y K, Yao M, Shao P G, Zhao Y H.J Mater Eng Perform, 2003; 12: 507
[25] Gao Y K, Lu F, Yin Y F, Yao M.Mater Sci Technol, 2003; 19: 372
[26] Gao Y K, Yao M, Yang Q X, Zhao Y H, Lu F, Wu X R..J Mater Eng Perform, 2005; 14: 591
[27] Gao Y K.PhD Dissertation, Beijing Institute of Aeronautical Materials, 2008
[27] (高玉魁. 北京航空材料研究院博士学位论文, 2008)
[28] Levitin V, Loskutov S.Strained Metallic Surfaces—Theory, Nanostructuring and Fatigue Strength. Weinheim: Wiley-VCH, 2009: 1
[29] Schijve J.Fatigue of Structure and Materials. London: Springer, 2008: 1
[30] Musinski W D, McDowell D L.Acta Mater, 2016; 112: 20
[31] Castelluccio G M,McDowell D L .Int J Fatigue, 2016; 82: 521
[32] Walker K F, Wang C H, Newman J C.Int J Fatigue, 2016; 82: 256
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[7] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[8] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[9] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[10] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[11] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[12] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[13] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[14] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[15] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
No Suggested Reading articles found!